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ABSTRACT 

Linked data adoption continues to grow in many fields at a considerable pace. However, some of the 

most important datasets usually remain underexploited because of two main reasons: the huge 

volume of the datasets and the lack of methods for automatic conversion to RDF. This paper presents 

an automatic approach to tackle these problems by leveraging recent Big Data tools and a program 

for automatic conversion from a relational model to RDF. Overall, the process can be summarized in 

three steps: 1) bulk transfer of data from different sources to Hive/HDFS; 2) transformation of data 

on Hive to RDF using D2RQ; and 3) storing the resulting RDF in CumulusRDF. By using these Big 

Data tools, the platform will cope with the handling of big amounts of data available in different 

sources, which can include structured or semi-structured data. Moreover, since the RDF data are 

stored in CumulusRDF in the final step, users or applications can consume the resulting data by 

means of web services or SPARQL queries. Finally, an evaluation in the hydro-meteorological 

domain demonstrates the soundness of our approach. 

Keywords: Automatic transformation to RDF, data integration, Semantic Web, NoSQL, RDF, semi- 

structured sources, big data, D2RQ, Apache Hive, CumulusRDF, Apache ServiceMix. 

 

 

RESUMEN 

La adopción de Linked Data sigue creciendo en muchos campos a un ritmo considerable. Sin 

embargo, algunos de los conjuntos de datos más importantes por lo general permanecen des-

semantificados debido a dos razones principales: el enorme volumen de los conjuntos de datos y la 

falta de métodos para la conversión automática a RDF. Este artículo presenta un enfoque automático 

para hacer frente a estos problemas mediante el aprovechamiento de nuevas herramientas de Big Data 

y un programa para la conversión automática de un modelo relacional a RDF. En general, el proceso 

implementado se puede resumir en tres pasos: 1) transferencia masiva de datos desde las diferentes 

fuentes hacia Hive/HDFS, 2) transformación de los datos en Hive a RDF utilizando D2RQ, y 3) 

almacenamiento del RDF resultante en CumulusRDF. De este modo, mediante el uso de estas 

herramientas de Big Data garantizamos que la plataforma sea capaz de hacer frente a las grandes 

cantidades de datos disponibles en diferentes fuentes, ya sea que contengan datos estructuradas o 

semi-estructurados. Además, puesto que los datos RDF se almacenan en CumulusRDF en la etapa 

final, los usuarios o aplicaciones pueden consumir los datos resultantes a través de servicios web o 

consultas SPARQL. Finalmente, una evaluación demuestra la solidez de nuestro enfoque. 

Palabras clave: Transformación automática a RDF, integración de datos, Web Semántica, NoSQL, 

RDF, fuentes semi-estructuradas, Big Data, D2RQ, Apache Hive, CumulosRDF, Apache ServiceMix. 
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1. INTRODUCTION 

 

We have reached an era where the vast amount of data generated every day is ever increasing. Thus, 

the amount of data generated at daily basis is comparable to the amount of data generated from the 

rise of computers until 2003 (Sagiroglu and Sinanc, 2013). In addition, it was estimated that 2007 

was the year when, for the first time, we could not store all the information that we were generating 

(Bifet, 2013). The applications which generate such data are very diverse and vary in domain and 

purpose. The most common applications that have contributed with this data deluge are sensor 

networks, bioinformatics, traffic management, GPS signals from cell phones, log records or click-

streams, manufacturing processes, retail companies, email, blogging, twitter and facebook posts, and 

many others (Knoblock et al., 2012; McAfee et al., 2012; Sagiroglu & Sinanc, 2013). Hence, the 

datasets generated by those applications varies from structured, semi-structured and unstructured 

datasets. All what these types of datasets have in common is the three main features: volume, variety, 

and velocity. These so called “the three Vs” are the main characteristics of a Big Data repository 

(Sagiroglu & Sinanc, 2013). Big Data involves different concepts, tools, and mechanisms that allow 

facing the management-complexity associated to this kind of datasets; than otherwise, it would be 

impossible to deal with. 

In addition to the complexity associated to this type of datasets, the Big Data notion of variety is 

a generalization of semantic heterogeneity (Hitzler & Janowicz, 2013). Such semantic heterogeneity 

poses the need to provide a semantic meaning, specially, to those semi-structured and unstructured 

datasets. Hence, the use of Semantic Web facilitates the creation of conceptual models to formally 

describe the datasets by means of ontologies1. One common approach to provide semantic meaning 

and share the data contained in those ever increasing datasets is Linked Data. Linked Data takes the 

main principle of the World Wide Web of global identifiers and links, and apply them to raw data of 

any type, not only to documents (Hitzler & Janowicz, 2013). According to Bizer the Web of Data had 

around 31 billion RDF triples by 2012. In addition, Erling states that Linked Data and RDF should be 

part of every regular data-engineering stack (Bizer et al., 2012). This demonstrates that Big Data, 

Linked Data, and RDF are concepts that go hand by hand. 

One common step in several methodologies for publishing Linked Data is the transformation of 

the raw data from the original sources to RDF (Hyland et al., 2014; Marshall et al., 2012; Villazón- 

Terrazas et al., 2012; Villazón-Terrazas et al., 2011; Zengenene et al., 2013). In this work we call 

such transformation process RDF-ization. Particularly, we focus on the RDF-ization of structured and 

semi- structured data sources, e.g., shapefiles, csv files, relational databases, excel files, XML, JSON, 

Web services, log files. We validate our approach using a dataset of the hydro-meteorological 

domain. The main contributions of our work are 1) an architecture for automatically generate RDF 

from heterogeneous semi-structured data sources, and 2) a Big Data repository for data in RDF 

format; i.e., we not only stay at the data conversion to RDF, but we leverage Big Data technologies 

which allow dealing with the ever increasing size of the Linked Data repositories. 

The remainder of this document is as follows. Section 2 presents the related work. In section 3 

we present a motivating example that illustrates the advantages and the applicability our approach. In 

section 4 we describe the architecture of our approach. Section 5 depicts the implementation details 

of the proposed architecture. In section 6 we present the evaluation of our approach in the hydro- 

meteorological domain. In section 7 we present the discussion of the results obtained after the 

evaluation. Finally, in section 8 we conclude the paper and propose paths for future research. 

 

 

2. RELATED WORK 

 

Nowadays when talking about Linked Data, and the semantification process to get there, is more 

                                                      
1  In computer science and information science, ontology is a formal naming and definition of the types, 

properties, and interrelationships of the entities that really or fundamentally exist for a particular domain of 

discourse. 
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common to find studies where researchers and practitioners recognize that Linked Data repositories 

need to be treated in a different way, i.e., as Big Data repositories. In this section we provide an 

overview of the studies about Linked Data generation and the management of RDF repositories as 

Big Data. 

There is a large volume of published studies describing the process of Linked Data generation. 

Corcho et al. (2012) proposed the transformation, publishing and exploitation of the data provided by 

the Spanish Meteorology Public Agency. In this study the authors mention that one of the main 

limitations is the lack of mechanisms to tackle the accelerated increasing of the datasets size which 

limited to keep only the data generated in the last week. Patni et al. (2010) presented a framework to 

transform and publish the data from the Meteorology Department of the University of Utah and to 

make them publicly available in the LOD cloud. Later on, Patni et al. (2011) proposed an extension 

to the previous work, extracting features from the RDF data which allow to detect and describe 

natural phenomena (e.g., storms, hurricanes, etc.). 

People working with Linked Data realized that the volume of data to be stored and processed is 

increasing dramatically. This has motivated researchers working on Semantic Web to combine their 

area of expertise with Big Data. Cudré-Mauroux et al. (2013) published a study of Big Data tools for 

massive storage of semantic data, i.e., data in RDF format. They describe four types of NoSQL 

databases and execute different performance tests which are compared against the results obtained 

from using traditional RDF triple stores. In this study they conclude that Distributed NoSQL 

databases may produce similar results and sometimes overcome those than using a native RDF triple 

store (e.g., 4Store). For instance, in a trial using a cluster of 16 nodes to manage 1 billion of triples, 

they obtained better results using the NoSQL databases Cassandra and Jena+HBase than those using 

4Store. In addition, they observed that the loading time of triples to the server scales more naturally 

when using NoSQL databases running in parallel. 

Khadilkar et al. (2012) proposed a distributed RDF triple store built on top of the Apache Jena 

Framework2 and the Apache HBase3 distributed database. They rely on the built-in support for 

diverse RDF processing features provided by Jena, and the scalability provided by HBase since it 

uses the Hadoop Distributed File System (HDFS) as its underlying storage mechanism. They state 

that this framework supports all the functionalities provided by traditional RDF stores, including 

reification, inference and support for SPARQL queries. 

Papailiou et al. (2012) presented H2RDF, a distributed RDF store that exploits the MapReduce 

processing framework provided by the HBase NoSQL database. One of the main features of this 

approach is that it enables simple and multi-join SPARQL queries over any number of triples. Cuesta 

et al. propose an architecture to process semantic data combining batch and real time processing 

(Cuesta et al., 2013). In their approach they separate the management of large data volumes from the 

generation and exploitation of the data in real time. The data are stored compressed using 

RDF/HDT4, while the real time processing requirements are handled using NoSQL databases. 

Other approaches exist that exploit the capabilities of graph NoSQL databases, pointing out that 

the natural form of RDF data is a graph. Zeng et al. (2013) presented Trinity.RDF, a distributed 

memory-based graph engine for large volumes of RDF data. They propose to store RDF data in its 

native form, i.e., graphs. This approach shows a better performance for SPARQL queries with respect 

to traditional RDF triple stores (sometimes orders of magnitude better). In addition, they state that 

since the data are stored as a graph, the systems can support other kind of operations, e.g., random 

walks, reachability, etc. 

Following a similar approach, Bouhali & Laurent (2015) proposed the transformation from RDF 

to NoSQL graph database format. They assert that since RDF’s native format is a graph, the data 

should be in a graph database format. In addition, they state that Graph Database solutions generally 

show better querying performance than those SPARQL based frameworks. 

                                                      
2  Apache Jenna Framework - https://jena.apache.org/ 
3  Apache HBase - https://hbase.apache.org/ 
4  HDT (Header, Dictionary, Triples) is a compact data structure and binary serialization format for RDF that 

keeps big datasets compressed to save space while maintaining search and browse operations without prior 

decompression. 

https://jena.apache.org/
https://hbase.apache.org/
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In previous studies we observed that the problem is tackled from two perspectives. Some people 

are devoted to generate Linked Data, while others are focused on how to handle the vast amount of 

data being generated. In this work we focused on both aspects at the same time. In this study we 

propose an architecture to automatically transform semi-structured and unstructured datasets to RDF 

and store it in a BigData RDF repository. 

 

 

3. MOTIVATING EXAMPLE 

 

Today, institutions are generating a vast amount of data about different domains (hydrological, 

meteorological, social network, geo data, etc.). Generally, those institutions have their own data 

repositories. A user who works on analysis of data from different institutions finds interesting to 

know more details about the data, for instance, the data model used in each source, how to access the 

data, data formats (shapefile, CVS, database, excel, etc.), the relationship between entities, entity 

search, available tools, querying mechanisms, etc. The current situation when working with data is 

that each repository is managed as a silo and each repository has its own data model and access form. 

Thus, syntactic and semantic heterogeneity between repositories become a real challenge to the user. 

In addition, when a user tries to integrate different repositories, the storage problem appears due to 

the large amount of data associated with this task. Currently, the process of storing and querying data 

from different repositories used in integration processes is performed manually. This implies that the 

user needs knowledge of different technologies and methodologies that allow optimal storage and 

processing of large volumes of data to perform searches and integration processes. 

Considering the limitations in storing and accessing the data, aiming to improve the user’s 

experience and given the conditions mentioned in this context, this work proposes the 

implementation of an architecture that allows storing a vast amount of data through the use of 

semantic and NoSQL technologies. 

 

 

4. ARCHITECTURE 

 

The main purpose of our approach is to provide an automatic tool for translating data from 

heterogeneous sources into RDF that can be consumed through SPARQL queries using big-data. We 

do not aim at merging all the possible sources together integrating the underlying semantics. Instead, 

each source is translated to an independent RDF dataset. 

 

Figure 1. Architecture of the proposed automatic RDF-ization platform. 
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Many structured and semi-structured sources are commonly used as regular sources without the 

need to be considered as Big Data sources. For instance, a regular-size Shapefile is a common source 

of geospatial information. However, on more complex scenarios, like the one described in the 

previous section, where thousands of Shapefiles and many other sources (such us plain text, csv, 

excel files, XML, databases, etc.) store lots of information regarding the same topic (i.e. remote 

sensor data of a hydro-meteorological observatory) they could be considered as part of a Big Data 

application, because they present the 3Vs (volume, variety, and velocity) of Big Data (Zikopoulos et 

al., 2011). 

The proposed architecture takes as input the aforementioned sources, processes them inside an 

Enterprise Service Bus platform (Chappell, 2004), and produces as a result a repository of 

independently stored datasets, where each source is corresponded with one dataset/graph. The final 

user can manipulate and query the data choosing the appropriate dataset. Figure 1 depicts the RDF-

ization process which involves two main components: 1) bulk transfer data from the source file to a 

temporal NoSQL store, and 2) transformation of data on the NoSQL store into RDF. In these steps 

appropriate Big Data tools were chosen in order to guarantee scalability and distributed processing 

capabilities. 

 

4.1. Bulk transfer to a temporal NoSQL database 

In this component we used Apache Sqoop5 (SQL to Hadoop) version 2 as the high-throughput 

transfer engine for dumping data from the source files to a temporal NoSQL database. Sqoop is an 

open source tool designed for efficiently transferring bulk data between Apache Hadoop and 

structured data stores such as relational databases (The Apache Software Foundation, 2016, p. 2). 

Sqoop uses MapReduce to import and export the data, which provides parallel operation as well as 

fault tolerance (Prakashbhai & Pandey, 2014). 

Since the main target of Sqoop are relational databases and NoSQL stores, it offers some ready- 

to-use connectors for those data sources. Nevertheless, the creation of a new connector to support a 

different kind of source is rather straightforward. As part of this work, we developed a connector for 

extracting data from a Shapefile source. The development process is described in the next section. 

We used Apache Hive6 as the temporal store of our approach, a popular data warehouse software 

which is being used as an alternative to store and process extremely large data sets on commodity 

hardware. Hive is an open-source data warehousing solution built on top of Hadoop, and supports 

queries expressed in a SQL-like declarative language - HiveQL, which are compiled into map-reduce 

jobs executed on Hadoop (Thusoo et al., 2009). These features (particularly the support of an SQL-

like language) are the reason why we decided to use it as our temporal store where the data is stored 

before being transformed into RDF. 

 

Development of a Sqoop2 Connector to extract data from Shapefiles 

As part of this approach, we created a Sqoop 2 Connector to transfer data from Shapefiles because in 

the context of the use case described in Section 3 a considerable amount of geospatial information is 

available on these kind of files. Shapefile is a popular geospatial vector data format for geographic 

information systems (GIS). It is developed and regulated by ESRI as an open specification (mostly) 

for data interoperability between ESRI and other GIS software products (ESRI, 1998). The Shapefile 

format can spatially describe vector features: points, lines, and polygons, representing, for example, 

water wells, rivers, and lakes. Each item usually has attributes that describe it, such as name or 

temperature. From a simplistic perspective, data from a Shapefile are organized as records of a single 

table. Therefore, the idea to dump data from a Shapefile to HDFS, can be seen in an analogous 

manner to dump data from a table in a relational database to HDFS. 

Two concerns were taken into account when developing the Shapefile Connector: 1) the 

Connector is of type FROM because we are interested only in extracting data from a Shapefile (The 

Apache Software Foundation, n.d.), and 2) it is mandatory to extract not only the extra metadata 

                                                      
5  Apache Sqoop - http://sqoop.apache.org/ 
6  Apache Hive - https://hive.apache.org/ 

http://sqoop.apache.org/
https://hive.apache.org/
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attributes but also the vector data. Regarding the implementation, we decided to use the GeoTools 

library (GeoTools, n.d.). 

According to the documentation (The Apache Software Foundation, n.d., p. 2), Sqoop2 

connectors encapsulate the job lifecycle operations for extracting and/or loading data from and/or to 

different data sources. Each connector will primarily focus on a particular data source and its custom 

implementation for optimally reading and/or writing data in a distributed environment. 

The development of the Shapefile Connector followed the Sqoop 2 Connector model, which 

captures the function of the Connector in four stages: Initialization, Partitioning, Extraction, and 

Destruction. Each stage is implemented in a separate class. Additionally, some classes defining the 

required configuration for accessing and defining runtime behavior are needed. All the functionality 

and structure of a Sqoop connector is deployed in a Jar file, which has to be registered in the Sqoop 

server before it can be used in an export job. 

 

4.2. Automatic conversion to RDF 

This section describes the second component of our approach, that is, the transformation of the 

relational data into RDF. As mentioned in the previous section, in the first component the bulk data 

transference with Sqoop2 delivers data to a temporal storage in an Apache Hive data warehouse. 

Following with the process, this second component ingests the temporal data stored on Apache Hive 

and transforms it to RDF. The core tools for accomplishing this task are D2RQ7 platform and 

CumulusRDF8 store. The former allows the conversion to RDF, while the latter is an RDF store 

where the generated RDF is placed. 

The architecture of D2RQ consists of three main parts: 1) the D2RQ Mapping Language, a 

declarative mapping language for describing the relation between an ontology and an relational data 

model; 2) the D2RQ Engine, a plug-in for the Jena and Sesame Semantic Web toolkits, which uses 

the mappings to rewrite Jena and Sesame API calls to SQL queries against the database and passes 

query results up to the higher layers of the frameworks; and 3) D2R Server, an HTTP server that can 

be used to provide a Linked Data view, a HTML view for debugging and a SPARQL Protocol 

endpoint over the database. D2RQ allows that a relational database, which is maintained by a non-

RDF legacy application, can also be accessed by a Non-RDF application. (Bizer & Seaborne, 2004; 

Bizer et al., 2009). 

Although the foremost aim of D2RQ platform is to access relational databases as virtual, read-

only RDF graphs, D2RQ also offers the option to create custom bulk transformation operations of 

relational data in RDF formats for loading it into an RDF store, which is the reason why we decided 

to use D2RQ. 

RDF generation from a database D2RQ provides two tools to create an RDF dump of the 

database, the generate-mapping tool and the dump-rdf tool. The generate-mapping tool builds a 

D2RQ mapping file by analyzing the schema of an existing database. This mapping file, called the 

default mapping, maps each table to a new RDFS class that is based on the table’s name, and maps 

each column to a property based on the column’s name. The mapping relies on the D2RQ Mapping 

Language, a declarative language for mapping relational database schemas to RDF vocabularies and 

OWL ontologies. The mapping file assists the dump-rdf tool to dump the contents of the relational 

database into a single RDF file (C. Bizer et al., 2009). 

Since Apache Hive is not yet supported nor has been tested by D2RQ, some adaptations on the 

source code of D2RQ were necessary. These changes to the source code constitute a minor 

contribution of this work. The first change sets that the syntax of Hive is similar to the syntax of 

MySQL, so it was not necessary to develop a new syntax, we just reused that of MySQL. A second 

change specifies that the full name of the columns when assembling a SQL query, shall not be 

composed by the name of the schema. And the third and final change was to include the jar files of 

the JDBC library of Hive inside the lib folder of D2RQ. 

 

                                                      
7  D2RQ - http://d2rq.org/ 
8  CumulusRDF - https://github.com/cumulusrdf/cumulusrdf 

http://d2rq.org/
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5. IMPLEMENTATION 

 

Our prototype was implemented using the Apache Camel9 integration framework, whose core is 

based on a routing engine that allows transfer of source-destination messages by mean of Enterprise 

Integration Patterns (EIPs). Camel has an architecture that facilitates interaction with any type of 

application, regardless of the data type or protocol used, avoiding unnecessary conversions (Ibsen & 

Anstey, 2010). 

A number of EIPs were used to implement the approach described in this manuscript.  

According to Hohpe and Woolf (2004) these elements are essential for communication between 

applications. These kind of patterns are built and supported in most Enterprise Service Bus (ESB) as 

Apache ServiceMix, FUSE JBOSS, MULE, etc. (Ortiz Vivar & Segarra Flores, 2015). 

Figure 2. RDF-ization Process with Enterprise Integration Patterns. 

 

Figure 2 depicts the proposed approach, which was implemented using four routes. Routes 1 and 

2 conditionally process each source type to bulk transfer data from the source to Hive. Route 1 uses 

the Content Enricher EIP to add the file extension of the source as a field in the message header. The 

file extension is used to choose a conditional processing path for each kind of source, because for 

each source an appropriate Sqoop Source Connector is used. For instance, when processing a 

Shapefile, the Sqoop transference job is configured to use our Shapefile Connector, and accordingly 

when extracting data from a database the Generic JDBC Connector is used. On the other hand, since 

all the data is bulk transferred to Hive, the chosen connector for this destiny is Kite10. 

Route 3 performs the conversion from Hive to RDF using D2RQ in two steps. The first step is  

to generate a mapping file based on the structure of HIVE data, and the second step is to build an 

automatic RDF dump of the Hive data. Finally, Route 4 sends the RDF data on the dump file to 

CumulusRDF. 

The prototype presented in this section was deployed on ServiceMix during the test phase. The 

architecture of ServiceMix is based on OSGI (Open Services Gateway Initiative) and can be 

                                                      
9  Apache Camel - http://camel.apache.org/ 
10 Apache Sqoop-KITE -https://cwiki.apache.org/confluence/display/SQOOP/Kite+Connector+Design 

http://camel.apache.org/


MASKANA, CEDIA 2016 

TIC.EC  124  

integrated with other projects such as Apache Camel, ActiveMQ, CXF, Karaf, etc. (Dirksen, n.d.). 

 

 

6. EVALUATION 

 

We evaluated our approach by RDF-izing a number of sources of different types, such as Shapefile, 

database, CSV, XML, among others. In this section we will describe an example using a Shapefile, 

which encloses information about the location of a network of remote hydro-meteorological stations 

in the Paute basin (See Figure 3). 

 

  

(a) (b) 

 

Figure 3. Plot of the Shapefile (a) and a fragment of the atributes (b) (obtained with QGIS). 

 

Our implementation deployed in ServiceMix automatically processes the files placed on a 

predefined folder, where the three components of our approach are carried out: 1) bulk transference 

of data to Hive/HDFS, 2) transformation from relational model of Hive to RDF using D2RQ, and 3) 

storing the resulting RDF to CumulusRDF. 

Listing 1 shows a fragment of the mapping file used for D2RQ to generate RDF data from the 

Hive temporal data for the Shapefile source. Three mapping sections can be seen: the first maps the 

database; the second section maps the table (in this case, the Shapefile temporary table as a 

d2rq:ClassMap); and the final section maps each column or property with the table. 

 

Listing 1. Portion of the D2RQ mapping file for the HIVE temporal table of the Shapefile source. 

 

@prefix map: <#> . 
@prefix d2rq: <http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/0.1#> . 
@prefix jdbc: <http://d2rq.org/terms/jdbc/> . 

 

# Mapping of the database 

map:database a d2rq:Database; 

d2rq:jdbcDriver "org.apache.hive.jdbc.HiveDriver"; d2rq:jdbcDSN 
"jdbc:hive2://localhost:10000/databasehive"; d2rq:username "ronald". 

. 

# Table shapefile 

map:databasehive_shapefile a d2rq:ClassMap; 

d2rq:dataStorage map:database; d2rq:uriPattern 

"databasehive/shapefile"; d2rq:class 

vocab:databasehive_shapefile; 
d2rq:classDefinitionLabel "shapefile". 

# Properties 

map:databasehive_shapefile_featureid a d2rq:PropertyBridge; 

d2rq:belongsToClassMap map:databasehive_shapefile; 

d2rq:property vocab:databasehive_shapefile_featureid; 
d2rq:propertyDefinitionLabel "shapefile featureid"; d2rq:column 

"shapefile.featureid". 

http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/0.1
http://d2rq.org/terms/jdbc/
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Once the RDFization process has been successfully completed, we can query the generated data 

from Cumulus. Listing 2 shows a snippet of the data returned by a SPARQL query for the RDF data 

of the Shapefile. 

 

Listing 2. Snipped of the result of a SPARQL select for the RDF data generated from the Shapefile 

source. This RDF was simplified with the use of prefixes for easy of understanding. 

 

 

7. CONCLUSIONS AND FUTURE WORK 

 

We presented an approach for automatic transforming vast amounts of heterogeneous structured and 

semi-structured data sources to RDF by using big data tools and D2RQ. The proposed transformation 

process has three main components: 1) bulk transfer of data from different sources to Hive/HDFS, 2) 

transformation from relational model of Hive to RDF using D2RQ, and 3) storing the resulting RDF 

to CumulusRDF. Our approach leverages the power of Big Data tools to deal with the tremendous 

amounts of data faced in several domains, like the Hydro-meteorological, which was used as the 

motivating example of this work. Since the resulting RDF generated is placed in CumulusRDF, the 

final users are enabled to consume this information by means of Web Services or SPARQL queries. 

The soundness of our platform was demonstrated by RDFizing a Shapefile. 

Our subsequent work will be focused on improving the automatic transformation to RDF by 

including methods that can be able to map the concepts of the data sources to the concepts of any 

given (parameterized) ontology, which would serve as the domain ontology. This will improve the 

applicability of our approach to an even wider range of domains. 

 

 

ACKNOWLEDGEMENTS 

 

This work has been funded by the DIUC (Dirección de Investigación de la Universidad de Cuenca), 

Research Direction of the University of Cuenca through the project “Integración, Almacenamiento y 

Explotación de datos Hidro Meteorológicos utilizando Big Data y Web Semántica”. 

 

 

REFERENCES 

 

Atemezing, A., O. Corcho, D. Garijo, J. Mora, M. Poveda Villalon, P. Rozas, D. Vila-Suero, B. 

Villazón-Terrazas, 2012. Transforming meteorological data into linked data. Semantic Web. 

Undefined, 1, 1-5, IOS Press. Available at http://www.semantic-web-

journal.net/sites/default/files/swj281_0.pdf. 

Bifet, A., 2013. Mining big data in real time. Informatica, 37, 4 pp. Available at 

http://ailab.ijs.si/dunja/TuringSLAIS-2012/Papers/Bifet.pdf. 

Bizer, C., P. Boncz, M.L. Brodie, O. Erling, 2012. The meaningful use of big data: four perspectives–

four challenges. ACM SIGMOD Rec., 40, 56-60. 

@prefix dump: <www.ucuenca.edu.ec/dump#> . 

@prefix vocab: <www.ucuenca.edu.ec/vocab> . 

 

dump:databasehive/shapefile vocab:/databasehive_shapefile_administra "PROMAS" . 
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