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ABSTRACT 

Planning a bus service requires to explore several feasible solutions attempting to optimize travel time, 

costs or both. The line planning problem (lpp) solves the combinatorial problem to define the routes 

for bus lines in a bus service under a set of constraints, input parameters and an objective function. 

The input parameters such as the demand, infrastructure, travel times, etc., describe the current 

situation, and provide both input data and the constraints that should be considered during the design. 

An algorithm that obtains feasible and high-quality solutions for lpp is essential in search of better 

urban services. In this study, a genetic algorithm is designed and coded to solve the lpp. Finally, an 

evaluation of the results is carried out from different perspectives, attempting to ensure the solutions 

obtained by the algorithm are consistent and therefore useful in practice. 

Keywords: Genetic algorithm, line planning problem, bus services. 

 

 

RESUMEN 

La planificación de un servicio de buses requiere explorar varias soluciones factibles que intenten 

optimizar el tiempo de viaje de los pasajeros, los costos de los operadores, o ambos. El problema de 

planificación de líneas de buses (line planning problem en inglés, lpp) es un problema combinatorio 

que define las rutas para las líneas de un servicio de buses bajo un conjunto de restricciones, 

parámetros de entrada y una función objetivo. Los parámetros de entrada, como la demanda, 

infraestructura, tiempos de viaje, etc., describen la situación actual y proporcionan datos iniciales y 

restricciones que deben considerarse durante el diseño. Un algoritmo que provea de soluciones 

factibles y de alta calidad para lpp es esencial para un análisis más profundo en busca de mejores 

servicios urbanos. En este estudio, se diseña y codifica un algoritmo genético para resolver el lpp. Por 

último, una evaluación de los resultados se realiza desde diferentes perspectivas, intentando asegurar 

que las soluciones obtenidas por el algoritmo sean consistentes y, por tanto, útiles en la práctica. 

Palabras clave: Algoritmo genético, problema de planificación de línea, servicios de autobús. 

 

 

1. INTRODUCTION 

 

The planning process for public transport is typically reported in the literature as a sequence of stages 

starting by line planning, followed by the planning of frequencies, and the sequential planning of the 

timetable, vehicle and crew schedules (Ceder & Wilson, 1986). The line planning problem (lpp) solves 

the problem of defining the line plan (set of bus lines, their routes and stops) including frequencies 

(Schöbel, 2012). The line planning process typically assumes that the road network, the location of the 

stops and the demand for transportation are given. 
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Mandl (1979) defined a method composed of two phases to solve the lpp: the first one starts 

creating a set of candidate bus lines, and in the second phase the optimal set is found by using a 

heuristic or metaheuristic. Research on similar methods to solve the lpp can be found in Pattnaik, 

Mohan, & Tom (1998), Chakroborty & Wivedi (2002), Ngamchai & Lovell (2003), Tom & Mohan 

(2003), Zhao & Zeng (2006), Cipriani, Gori, & Petrelli (2012), Nayeem, Rahman, & Rahman (2014), 

Zhao, Xu, & Jiang (2015). These studies evaluated the performance of the algorithm mainly by 

comparisons between their results and others reported in the literature. The focus is the efficiency of 

the algorithm but the evaluation of other aspects, such as the influence of using random numbers 

during calculations, and the fact that changes on the input parameters (i.e., number or maximal length 

of bus lines) should lead to expected results, are not considered. 

To design a line plan for a certain region, some data must be provided, the streets available for 

public transport, the expected number of passengers moving from one point of the city to another, the 

fleet size, etc., are some examples of the required information to plan bus lines. These details are 

called input parameters in the literature (Guihaire & Hao, 2008; Ibarra-Rojas, Delgado, Giesen, & 

Muñoz, 2015). Although each of these parameters can contribute to achieve better solutions, it is not 

necessary to use them all. It is possible to establish, based on the specific goals of the bus service to be 

designed, which parameters are relevant for each case. 

The lpp is typically solved considering two different perspectives: minimization of the cost to 

operate the bus service (the operator’s perspective) and maximization of the experience of the 

passengers (the passenger’s perspective) (Kepaptsoglou & Karlaftis, 2009; Schöbel, 2012; Farahani, 

Miandoabchi, Szeto, & Rashidi, 2013; Ibarra-Rojas et al., 2015). During the quality evaluation of a 

line plan, the travel time is one of the most appreciated user indicators (Van Oort, 2011). Users 

strongly prefer short travels, but also more predictable travel times, as reported in a review on the 

subject (Carrión & Levinson, 2012). Obviously, many researchers try to minimize the total travel time 

(ttt) when designing a line plan (e.g., Baaj & Hani, 1991; Chakroborty & Wivedi, 2002; Borndörfer, 

Grötschel, & Pfetsch, 2008; Zhao et al., 2015). The ttt is the summation of riding and waiting times 

related to a bus service. Especially for problems with a user’s perspective the design of a line planning 

attempts to minimize the ttt. 

The most popular metaheuristics to solve the lpp are genetic algorithms (GA) and simulated 

annealing (Farahani et al., 2013). In our study we designed a passenger-oriented GA to solve the lpp. 

A GA mimics the principles of natural evolution, such as variation, selection, recombination and 

mutation to exchange attributes between two or more good solutions. The basic concepts of GA were 

developed by Holland (1975) and Goldberg (1989). Unlike other studies, the evaluation takes care of 

thoroughly analyzing the identified bus lines. The solutions obtained by the GA must differ according 

to some change in the conditions of the problem (e.g., changes in the values of the input parameters). 

This difference should be significantly larger than differences caused by the randomness of the GA. 

The applied evaluation method has three stages: 1) benchmark comparisons, 2) analysis of the 

influence of random numbers used in the algorithm; and 3) analysis of expected results due to changes 

in the input parameters values. After the three-stage analysis, the study concludes if the GA developed 

is a worthwhile tool and consequently, the line plans calculated by this GA are considered good 

enough to be studied during decision making for better urban services. Results might advise to use the 

tested GA as a part of a larger research on improving the bus service for the city of Cuenca and 

designing flexible line plans. 

In the following sections details about the passenger-oriented GA to solve the lpp are delivered. 

The selection of input parameters is discussed at the beginning, and then the generation of the pool of 

lines and the fitness value calculations are described. Later, the set of genetic operators, specially 

developed for this specific problem, are described in full. A small-size benchmark network (Mandl, 

1979) of 15 bus stops, 21 undirected links and a demand of 15,570 travels, is used in this study. 

Finally, the evaluation results, conclusions and future work are presented. 
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2. PASSENGER ORIENTED GENETIC ALGORITHM 

 

The passenger-oriented GA designed in this study returns a line plan minimizing the ttt for a given 

situation. The value of ttt is considered as nominal because it is calculated based on the line plan only. 

In this study, the real waiting and walking times resulting from the timetable and transfers are not 

measured. We also assume that all demand must be served, with or without transfers. The vehicles are 

considered large enough, so no capacity restrictions are needed. This corresponds to if the frequency at 

certain lines can be increased if the vehicles would be too small. Furthermore, we assume that all 

passengers will take the fastest path, based on travel times (including transfer time if needed), given 

the developed line plan. 

Algorithm 1 presents the general GA procedure to solve the lpp. In the first stage the input 

parameters set the situation for which the bus service will be designed. Later the algorithm creates a 

set of bus lines that meet the constraints and assumptions. That set is the input to create several line 

plans that will be part of the initial population. Every population generated by the GA, corresponds to 

a set of feasible line plans. Having an initial population, the GA starts the evolution process: 1) the ttt 

(fitness value in lpp) is calculated for each individual in the population and the best line plan is saved 

as the best solution for that iteration; and 2) new individuals are created by genetic operators 

combining parts of selected individuals to create new ones. Finally, when all the iterations are 

completed, the algorithm chooses among all the individuals with the best ttt in each iteration, the one 

with the shortest ttt; that individual is the solution. 

 

Start 

1. Read input parameters 

2. Create a pool of feasible bus lines 

3. Create an initial population using the pool of lines 

4. Repeat while the stop criterion is not reached: 

4.1. Calculate the ttt for each individual in the current population 

4.2. Sort the individuals according their fitness value 

4.3. Save the best individual 

4.4. Getting a new population applying the genetic operators 

5. Selecting the best solution achieved in the iterations 

End 

Algorithm 1. Steps of a genetic algorithm. 

 

The following subsections provide further details on this algorithm. 

 

2.1. Input parameters 

A set of seven input parameters of the lpp was selected in this study to describe a situation. The input 

parameter network is a representation of an urban zone, it is represented by a graph where nodes are 

bus stops and links are the connections between nodes where buses can drive, in two directions. The 

demand is the total number of passengers. As is often the case, the demand in this study will be 

represented by an origin-destination (OD) matrix, defining the number of passengers going from node 

i to j. The OD matrix in this study is aggregated. The next input parameter is a vector with the travel 

times, that is, the time required to go from node i to j (the length of the links and the speed of the buses 

are implicitly defined). The line length represents the total time available for a bus line to go from its 

initial starting point to its ultimate destination. The stop time is the time required for a bus to stop at a 

bus stop. Although in many line planning studies this parameter is set to zero, in this work it will be 

considered explicitly to make the conditions of the situations more realistic. The fleet size is another 
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input parameter that provides the maximum number of buses available to serve the passengers. In our 

study, it plays the role of a budget constraint for the operator. Since using more buses allows avoiding 

transfers, and thus reduces the ttt, the number of bus lines used in a high-quality solution will always 

be equal to this fleet size. The last input parameter is the transfer time, a penalty in the ttt when 

passengers need a transfer. In practice, the transfer time depends on the timetable, but since this work 

is focused on line planning and no timetable is designed yet, a fixed penalty will be used for all 

transfers (exact waiting and walking times are not calculated). In the literature, there are several 

studies using a fixed value as a replacement for the real transfer time (e.g., Mandl, 1979; Pattnaik et 

al., 1998; Chakroborty & Wivedi, 2002; Nayeem et al., 2014). 

 

2.2. Pool of lines 

The algorithm starts by creating a large set of feasible bus lines. A feasible line must satisfy the 

following constraints: (1) a node (bus stop) cannot be present twice in a line; (2) the length of the line 

cannot be greater than the parameter line length. It should be noted that we assume that buses stop at 

each node of their line, so a bus cannot drive by a bus stop without serving it. This corresponds to 

most research in literature on this network. To generate lines, for each pair with a non-zero value in the 

OD matrix, the algorithm first generates the fastest path (the shortest path in terms of time), and later 

m (6 in our algorithm) simple paths using a blind search method. A simple path, in graph theory, is 

defined as a path without repeating nodes. The fastest path and the simple paths are considered as bus 

lines in the pool. 

 

2.3. Initial population 

A population is illustrated in Figure 1. Each line plan in this figure (or solution or individual) is a set 

of bus lines and a bus line is a sequence of bus stops. There are only feasible individuals in a 

population. The individuals of the initial population are created by taking randomly lines from the pool 

of lines until a feasible line plan is achieved. The following criteria explain when they are feasible: (1) 

All the nodes of the network are present in the line plan and they are connected (the line plan is 

strongly connected). There is at least one path (with or without transfers) to connect any pair of nodes 

of the network (if there is demand on this pair). The algorithm defined by Tarjan (1972) is used to 

verify that a line planning is strongly connected. (2) The line planning has exactly fleet size lines. If 

the number of lines of an individual is fleet size but constraint (1) is not reached, then the line plan is 

rejected, and the procedure starts over again. 

 

Figure 1. GA population. 

 

The initial population must be sufficiently diverse to avoid premature convergence of the 

algorithm. An exploration spanning several areas of the search space, helps to achieve higher quality 
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solutions. Mutation and a population with individuals different from each other, are methods that 

prevent convergence. That is why, when an individual is generated, an external composition control is 

executed before it is included in the initial population: the overlap between individuals cannot be 

higher than a certain percentage (30% in this study). 

 

2.4. Individuals evaluation 

For each individual in the population, the ttt, i.e. the quality of the solution or fitness value, is 

calculated. The line plans are represented by a graph where all nodes of the network are present, but 

the links are now defined by the routes of the bus lines. This initial graph is extended with additional 

nodes and links, in order to model the potential transfers and transfer times between the lines. On this 

artificial graph, the standard algorithm defined by Dijkstra (1959) is used to calculate the fastest path 

for each OD-pair. The summation of all fastest paths, weighted by the number of passengers on each 

OD-pair, results in the total travel time (ttt) for the line plan. 

Next, the individuals in the population are sorted in ascending order based on their ttt. Then, an 

elitist selection process (Affenzeller, Wagner, Winkler, & Beham, 2009) selects the best n (10) 

individuals of the current population to populate the next population. Having n lower than the total 

number of individuals in the population, the new population is completed with the newly created 

individuals, resulting from applying genetic operators (crossover and mutation) on individuals of the 

current population. This iterative process is repeated until the stop criterion is fulfilled (in this work: a 

certain number of iterations: 100). The genetic operators are discussed next. 

 

2.5. Genetic operators 

In problems such as lpp, the classic genetic operators can produce infeasible individuals if the 

problem’s inherent aspects are overlooked. To mention a case, when a genetic operator changes the 

sequence of stops along a bus line, it must ensure each stop in the new line can connect to the next 

directly. In a real network, the bus stops are not connected directly with all the others but only with a 

subset; these connections are defined by means of an adjacency matrix. Feasible individuals can be 

obtained if genetic operators use that matrix to create individuals whose stops are connected. Genetic 

operators considering these kind of problem-specific aspects, need to be developed. 

Crossover is a genetic operator that combines individuals to create a new one. Two strategies to 

perform the crossover operator were designed for lpp in this study. In literature there are several 

methods to select the individuals to combine. In our approach, a rank selection is used. Every 

individual in the population is ranked based on its fitness value. Then, two individuals are selected 

randomly and the individual with the better rank becomes parent A. Then another two are selected and 

the individual with the best rank is selected as parent B. Once the parents are selected, the crossover is 

performed. 

The first strategy tries to combine the parents copying the first p (p is a random number smaller 

than fleet size) lines of parent A (the lines are not sorted inside of the individuals) in the new 

individual and then it verifies if the new individual is feasible. If not, the crossover operator adds a line 

from parent B that has at least one node that is not yet present in the new individual. This process 

continues until the individual is strongly connected or until the possible combinations are exhausted, 

in which case the new individual is rejected, and the procedure starts over again. 

The second strategy first selects a line and a stop of this line in parent A. Then it finds a line in 

parent B who also has the selected node and merges the lines using the node as a pivot. Thus, the new 

line is composed of the first nodes of the line in parent A up to the pivot, and the nodes from the pivot 

up to of the end of the line in parent B. The process is repeated until the new individual is strongly 

connected or until there are no more chances of combining elements. 

In both strategies, if there is space for more lines in the new individual, the crossover operator 

will try to include extra lines that reduce the number of passengers needing a transfer. An OD pair 

with a transfer and a demand greater than the overall average demand is randomly selected. Crossover 

adds the fastest path between the OD pair as a line to the new individual until no more lines can be 

added. 
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Then the mutation operator is applied to all individuals of the new population. The mutation 

selects a line of an individual and tries to add a node to this line or delete a node from this line. To do 

this, the algorithm verifies if the changes in the line produce a feasible line and if the individual 

remains feasible, if not the mutation is rejected. Both operators, adding or removing, are applied with 

the same probability. 

 

2.6. Solution 

The best line plan for a given situation is the one with the lowest value of ttt in any population. The 

GA was coded and run in Matlab R2016b (9.1) under Windows 7 Professional on a computer with 

processor Intel i7 3.40 GHz and 16 GB of RAM. 

 

 

3. CASE STUDY 

 

The network used in this research is described by Mandl (1979) and used by many others (e.g., Baaj & 

Hani, 1991; Chakroborty & Wivedi, 2002; Zhao et al., 2015). This network has 15 nodes and 21 direct 

links. 

 

Figure 2. Mandl's network. 

 

Figure 2 illustrates the location of the nodes and the travel time on each arc, also provided by 

Mandl. In this work, the speed of the buses is equal to 30km/h, which is a suitable speed for urban 

areas. The demand is distributed as in Table 1. All the nodes in the network have a demand greater 

than zero, except node 15, and the total demand is 15,570 travels. Nodes 10, 6 and 1 have the highest 

demand. The demand between nodes is symmetric. The line length used here is 50 minutes and the 

fleet size 4 buses. The value for stop time is 1 minute, and the transfer time is set to 10 minutes. 

The GA runs 100 iterations for a population of 40 individuals where the 10 best individuals (n) 

are copied to the next generation. Since the GA uses random numbers during the calculations, the 

algorithm is executed 10 times and the best result out of these 10 runs, is considered as the final 

solution. These values were determined during preliminary tests. Table 2 presents the results of the 

different runs for Mandl’s network. Run 9 (in bold) has the lowest ttt. The last row indicates during 

which of these 100 iterations, the best ttt was obtained. 



Maskana - Ingeniería Civil 

Congreso I+D+ingeniería, 2017 165 

Figure 3 illustrates the resulting line plan with a fleet size of 4. This line plan copes with all 

demand in 185,930 minutes (ttt); the percentage of direct travels (d0), travels with 1 transfer (d1) and 

travels with more than 1 transfer (dm) are 94.24%, 5.38% and 0.38% respectively. The average travel 

time for passengers is 11.94 minutes. 

 

Table 1. Origin-Destination (OD) matrix. 

From/To 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0 400 200 60 80 150 75 75 30 160 30 25 35 0 0 

2 400 0 50 120 20 180 90 90 15 130 20 10 10 5 0 

3 200 50 0 40 60 180 90 90 15 45 20 10 10 5 0 

4 60 120 40 0 50 100 50 50 15 240 40 25 10 5 0 

5 80 20 60 50 0 50 25 25 10 120 20 15 5 0 0 

6 150 180 180 100 50 0 100 100 30 880 60 15 15 10 0 

7 75 90 90 50 25 100 0 50 15 440 35 10 10 5 0 

8 75 90 90 50 25 100 50 0 15 440 35 10 10 5 0 

9 30 15 15 15 10 30 15 15 0 140 20 5 0 0 0 

10 160 130 45 240 120 880 440 440 140 0 600 250 500 200 0 

11 30 20 20 40 20 60 35 35 20 600 0 75 95 15 0 

12 25 10 10 25 15 15 10 10 5 250 75 0 70 0 0 

13 35 10 10 10 5 15 10 10 0 500 95 70 0 45 0 

14 0 5 5 5 0 10 5 5 0 200 15 0 45 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

 

Table 2. Runs of the normal situation. 

# run 1 2 3 4 5 6 7 8 9 10 

ttt (min) 188,120 188,870 188,160 189,670 188,130 189,290 188,040 188,700 185,930 190,460 

# iteration 65 16 49 54 34 20 96 33 73 34 

 

 

Figure 3. Line plan for Mandl's network. 

 

As the performance indicators showed, using this bus service, some travels can be done directly 

while others must make one or more transfers. For instance, a direct travel is possible for passengers 

moving from stop 4 to stop 10. Line 4 provides a direct connection starting at 4 passing by 6 and 8 

before arriving at their final destination in 16 minutes. A transfer is required by passengers traveling 
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from stop 3 to 9. In this case, the bus service does not provide a direct travel, so passengers take line 1 

until they reach stop 6, then they must make a transfer to line 4 to reach their destination. This trip 

takes 25 minutes considering the penalty for the transfer. This solution will be referred as “reference 

solution” in Sections 4.2 and 4.3 of this paper. 

 

 

4. EVALUATION 

 

The three stages of the evaluation proposed in this study are described in the following subsections. 

 

4.1. Benchmark comparisons 

In this first stage of the evaluation the results are compared with those reported in the literature. Given 

the different input parameter settings and assumptions used in the literature, it seems impossible to 

fairly compare which algorithm is the best to solve the lpp. Therefore, the focus is on evaluating that 

the line plan obtained by our algorithm has at least a high quality. This means that the solution has 

similar travel times to those that have been reported so far. Furthermore, it should be noted that, until 

now, no optimal line plans are available for this (small) benchmark network. Studies as Mandl (1979), 

Baaj & Hani (1991), Chakroborty & Wivedi (2002), Zhao & Zeng (2006), Nikolić & Teodorović 

(2013), Nayeem et al. (2014), Zhao et al. (2015) uses Mandl’s network as an instance to solve the lpp 

with a passenger´s perspective. Four of these studies report the passenger’s average travel time for 

Mandl’s network having 4 bus lines. The settings for our test were set as close as possible to the cases 

in the literature, but in some situations the values for input parameters are not reported or the 

assumptions are not the same as ours. The stop time was set to 0 min, transfer time to 5 min and fleet 

size to 4. Our GA then calculates an average travel time of 10.5 minutes for this new situation. 

Figure 4 presents the benchmark and our results. In the case of the study of Nayeem et. al. (2014), 

the value corresponds to the one got by the algorithm called GAWIP. 

 

 

Figure 4. Average travel time reported in literature. 

 

Our average travel time seems a rather good result compared to the ones presented in literature; 

only the studies of Nikoli & Teodorovi (2013) and Nayeem et al. (2014), outperform our results by a 

small difference. Nevertheless, it should be noted that although all the studies cited in Figure 4 aim to 

improve travel times for passengers, the objective function they use differs. For instance, Chakroborty 

& Wivedi (2002) proposed a method based on the sum of the product of some weighted (defined by 

the user) scores. The calculation of the scores is based on 5 criteria. Nikolić & Teodorović (2013) 
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instead evaluated the solutions through a sum of the total travel time for all served passengers, the 

number of trips with a transfer and the number of unsatisfied passengers; the last two multiplied by a 

penalty. This variety of objective functions and assumptions about the problem creates the need to 

evaluate solutions also from other points of view. Stages 2 and 3 of the evaluation method proposed in 

this work attempted to make a deeper analysis of the solutions obtained with our algorithm. 

 

4.2. Influence of random numbers 

A set of random numbers are used in the algorithm. For instance, during initial population generation, 

a line is selected from the pool of lines by choosing a random index. This is done using a pseudo 

random number generator. This kind of tools return, after the application of mathematical and 

statistical methods, a number from a sequence, and the sequence of numbers is initialized through a 

number called seed and changes for different seeds. As in all cases where random numbers are used, 

our GA will get the same results if the seed remains. 

This stage of the evaluation focuses on analyzing the influence of random numbers on the results 

of GA. Although by the application of different seeds, the results obtained differ and the differences 

between solutions should be smaller than those generated by changes in the conditions of the problem. 

That is, a change in the input parameters such as demand or line length should lead to larger changes 

in the solution than those produced by the random numbers. 

The algorithm is executed 10 times for a given situation. The fleet size is the selected input 

parameter to vary during this test. This was selected since it is easy to see that more bus lines should 

generate a greater number of direct travels. If the algorithm is working properly, this change should 

result in a lower ttt. 

 

Table 3. GA runs applying different random seeds. 

Run Reference 
Situation 2 

fleet size 5 

Situation 3 

fleet size 6 

1 185,910 184,290 181,460 

2 186,610 184,330 181,540 

3 186,650 184,660 182,510 

4 186,670 185,400 182,890 

5 186,770 186,000 182,920 

6 189,160 186,090 182,920 

7 189,620 187,240 183,250 

8 189,870 187,340 184,050 

9 190,340 188,880 184,550 

10 190,490 189,470 184,550 

Average 188,209 186,370 183,064 

SD 1,829 1,831 1,090 

Difference 
 

1,839 5,145 

 

Table 3 presents ten ttt (sorted in ascending order) obtained by using different seeds. The fleet 

size changes from 4 in the reference solution to 5 and 6 in situations 2 and 3 respectively. In row 

number 11 the average of all ttt achieved in the runs for each situation is presented, later the standard 

deviation is calculated as a measure of the difference between runs in a same situation and presented 

in row 12. Finally, the absolute value of the difference between the average ttt of reference solution 

and situation 2 and 3 are calculated and presented in row 13. In both cases the difference due to 

changes in the input parameters is greater than the one due to random numbers. 
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4.3. Changes in the input parameters 

An alternative to validate the performance of the algorithm, is based on changing several input 

parameter values. Then, it can be evaluated if the resulting changes to the line plans correspond to 

what could be expected. Changes in fleet size (4, 5 and 6 available buses), and line length (30, 50 and 

70 minutes) are considered. The algorithm was used for 9 different situations and the results are 

presented in Table 4. Each row corresponds to a situation and columns 3 to 6 present the ttt, % of 

direct travels (d0), % of 1 transfer travels (d1) and % of more than 1 transfer travels (dm) respectively. 

Column 7 depicts the required CPU-time in seconds to get the solution using the GA. Four types of 

changes in the line plan could be expected for these perturbations. In the following are these changes 

one by one discussed to verify if these indeed occur in the result of our algorithm. 

1) Better ttt when more lines are available: This effect was described in the previous section, we 

now perform complementary tests were also the value of line length changes. The ttt in the 

new tests improves when the number of available lines increases as can be seen in Table 4. 

 

Table 4. Line plan changes due to perturbations. 

line length 

(min) 

fleet 

size ttt (min) d0% d1% dm% 
CPU time 

(sec) 

30 4 196,250 86.64 12.97 0.39 91.06 

5 193,330 88.44 11.05 0.51 94.30 

6 192,030 89.79 10.21 0.00 123.23 

50 4 185,930 94.22 5.39 0.39 54.64 

5 183,660 93.51 5.78 0.71 67.14 

6 181,340 96.34 3.66 0.00 80.01 

70 4 186,050 94.28 5.59 0.13 59.48 

5 182,670 95.95 4.05 0.00 73.42 

6 179,860 98.84 1.16 0.00 91.36 

 

2) Better paths and avoiding transfers: The results illustrate how the algorithm attempts to avoid 

transfers and to get better paths. Figure 5 illustrates an example when the line length is 30 min 

and the fleet size is changing from 4 to 5 and finally to 6. When considering the travels to stop 

10 (the most demanding node) in the first line plan, passengers from stops 1 and 9 require a 

transfer to reach stop 10 and a direct travel is available from stop 12. This leads to 13,430 min 

to move all these passengers to stop 10. In the second line plan, the fleet size changes to 5, 

now passengers from stops 1 and 9 have a direct travel to 10, but passengers from stop 12 

require a transfer. This leads to 13,230 min to move all these passengers to stop 10. Finally, 

the last line plan has fleet size 6, all stops, except 9, have a direct travel to 10. It should be 

noted that, for instance, more passengers are travelling to stop 10 from 12 than from 9. This 

leads to 12,470 min to move all these passengers to stop 10. The algorithm decides which 

transfer should be avoided for further improving the ttt. The resulting line plans thus 

correspond to what could be expected. 

 

3) Good solutions are recognized: This expected outcome occurs when longer lines are allowed 

(line length increases). Under that condition, some fragments of the bus lines appear in every 

solution. For instance, when the line length is 30 min, the solution has the line (1-2-3-6-8-9), 

which needs 25 min to be traveled. If line length increases to 50 min the solution has a new 

largest (33 min) line (1-2-3-6-8-10-14-13) and finally for 70 min the solution has an even 

larger (52 min) line (1-2-3-6-8-10-11-12-4-5). So, the algorithm allows largest lines to keep 

the best parts (the fragment 1-2-3-6-8) of the previous smaller lines. These results illustrate 

that the algorithm improves solutions according to the values of the input parameters. 
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4) Optimization focuses on ttt: The last type of expected result is that higher values of d0 might 

be expected as an indicator of improvement. However, since the only objective is to minimize 

ttt, this is not necessarily true. For instance, when the line length is 50 min and the fleet size 

changes from 4 to 5 (Table 4) the ttt improves, but d0 gets worse. This can be explained by the 

fact that line length and fleet size play the role of constraints and not all travels can be served 

by a direct travel. Therefore, a good selection of direct and transfer travels will reduce the total 

travel time. 

 

 

Figure 5. Line plans due to changes in fleet size. 

 

 

5. CONCLUSIONS AND FUTURE WORK 

 

In this paper, a well performing genetic algorithm aiming minimization of the total travel time (ttt) of 

passengers for the line planning problem (lpp) was developed and evaluated. The fleet size and line 

length of the bus lines are fixed and act as budget constraints from the operator side. The three-stage 

evaluation applied to the results revealed that: 1) the results have travel times similar to the best results 

reported in previous studies; 2) the bus lines found for a specific situation differ from those found for 

another situation. This difference is clearly larger than the difference between different runs using 

random numbers. In this way, it is possible to ensure that the bus lines are designed considering the 

conditions of their environment and are not a product of chance, and; 3) the solutions change 

according to changes in the input parameters. It illustrates that the design of the bus lines carried out 

by the algorithm, is strictly guided by the conditions defined by the input parameters and the objective 

function. 

Future challenges are to evaluate, in the same fashion of this work, frequencies and timetables 

enabling maximization of the customers’ satisfaction regarding the bus service. Analyzing, evaluating 

and selecting the input parameters and their effect on the solutions can help to achieve algorithms that 

design line plans for real instances of the problem. The results illustrate that the passenger-oriented 

GA is working as expected, and consequently it can be used as a tool to design real bus services and 

for further research on how to improve the performance of the service through a flexible line plan.  
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