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ABSTRACT 

A 3D tracking system that works with a minimum of two cameras has been implemented. The 

proposed system consists of two main processes: a calibration process followed by a 3D tracking one. 

The calibration process is done only when the system is installed; but, should be repeated if camera 

parameters, either internal or external, are changed. Internal calibration was conducted based on the 

cameras’ final locations; therefore, internal parameters include operating conditions. The adopted 

Wide Baseline Matching (WBM) scheme provides feature descriptors with high distinctiveness. 

Matching is achieved by using a voting algorithm based on a similarity transform and the robust 

Random Sample Consensus (RANSAC) statistical method that enforces the epipolar constraints. The 

implemented WBM procedure provides feature correspondences between the image planes of the two 

cameras used for the external calibration. The 3D tracking process corresponds to the normal 

operation of the system after the calibration process. The proposed 3D tracking scheme which 

combines 2D tracking data from each camera is based on a triangulation method and the determined 

internal and external camera calibration parameters. 

Keywords: Tracking, epipolar, wide baseline matching, triangulation, camera calibration. 

 

 

RESUMEN 

Un sistema de seguimiento tridimensional (3D) que funciona con un mínimo de dos cámaras ha sido 

implementado. El sistema propuesto consiste de dos procesos principales; un proceso de calibración 

seguido de uno de seguimiento 3D. El proceso de calibración es ejecutado cuando el sistema es 

inicializado; pero, debe ser repetido si los parámetros de las cámaras, ya sea internos o externos, 

varían. La calibración interna se realiza en las ubicaciones finales de las cámaras por lo que los 

parámetros internos incluyen las condiciones de operación. El esquema de coincidencia de línea base 

amplia (WBM) adoptado proporciona descriptores con alta distinguibilidad, las coincidencias se 

determinan mediante el uso de un algoritmo de voto basado en la transformada de similaridad y 

RANSAC, que es un método estadístico robusto el cual se encarga de hacer cumplir las condiciones 

epipolares. Las correspondencias encontradas entre imágenes de dos cámaras mediante el 

procedimiento WBM son utilizadas para la calibración externa. El proceso de seguimiento 3D 

corresponde a la operación normal del sistema luego del proceso de calibración. El esquema de 

seguimiento 3D propuesto, el cual combina la información de seguimiento 2D de cada una de las 

cámaras, se basa en un método de triangulación que emplea los parámetros internos y externos de la 

calibración de las cámaras. 

Palabras clave: Seguimiento, epipolar, coincidencias de línea base amplia, triangulación, calibración 

de cámara. 
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1. INTRODUCTION 

 

Most of the times, video surveillance systems are formed by multiple sensors that can also have 

overlapping surveillance volumes among them. These common volumes can represent a waste of 

resources in a basic surveillance system, or the redundant information can be exploited to gain three-

dimensional (3D) information from multiple views.  

Of course, additional information about the optical system of the video sensors, as well as the 

relative positions and rotation of the sensors in the 3D space is required, information known as 

internal and external parameters (Hartley and Zisserman, 2003). Camera calibration consists in 

estimating the internal and external parameters of the cameras. This task becomes more difficult in 

outdoors systems where the use of specialized patterns for the camera calibration (Bouguet, 2004) is 

not a practical approach. In Lee et al. (2000) internal calibration is avoided by taking the internal 

parameters from the camera manufacturer’s specifications, and the external calibration is solved by 

using homographies to align each camera view to a ground plane; a minimum of three cameras are 

required for this method. Collins et al. (2000) used a set of PTZ cameras of which the internal 

parameters are estimated by rotating and zooming the cameras, and the external parameters are 

defined using a previously measured set of landmarks. 3D tracking can also be achieved with one 

camera (Collins et al., 2000); but in this case a 3D model of the terrain is required. 

Three-D tracking of objects that are in the field of view on 2 cameras can be obtained using the 

2D tracking information of the objects in each of the cameras. Therefore a 2D tracking system is 

necessary. The core of the 2D tracking system presented in this paper is a background subtraction 

model. The principle of the background subtraction method is to create a model of the scene’s 

background, this background model is then used to determine the foreground as shown in Eq. (1.1): 

 
Thbackgroundframe ii 

 (1.1) 

where framei and backgroundi represent the frame and the background model at the instant i and Th is 

a global threshold. 

Unfortunately, the image background is not stable. Therefore the background model needs to be 

able to cope with camera noise, illumination changes (fast and slow), new objects added or removed 

in the background (e.g. parked cars), repetitive motion (e.g. tree branches), etc. So, the simple 

approach of frame differentiation can only be used in very restricted environments, which is not the 

case of an outdoor environment. The simplest way to introduce memory in the background model is 

by using the average of the images across time as the background model. A running average as 

presented in Stauffer and Grimson (1999) can be used to reduce the memory requirements. In Lo and 

Velastin (2001) the background is updated by using a temporal median background update technique. 

A more developed statistical approach is presented in Wren et al. (1997), where a Gaussian 

probability density function (PDF) is used to model the process of every pixel. The PDF’s parameters 

(mean and variance) are updated using the running average method presented in Stauffer and Grimson 

(1999). 

Finally the 3D tracking is obtained by using the projection matrix, which incorporates the 

internal and external parameters of cameras, and the 2D tracking information from each camera. 

Detailed information of the process is provided in the following sections. 

 

 

2. CAMERA CALIBRATION 

 

Camera calibration is a required step for 3D tracking. A review of the camera calibration theory is 

given in Section 2.1 The implemented algorithms for internal and external calibration are presented in 

the Sections 2.2 and 2.3, respectively. 
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2.1. Camera calibration theory 

A picture or a frame of a video sequence represents the projection of a 3D structure into a 2D image. 

This dimensional simplification, added to the deformation effects introduced by the camera lens, 

makes the reconstruction of the 3D world a non straightforward task. Faugeras et al. (1992) present a 

camera calibration method that does not require the use of a specific pattern; it is based on matching 

features in different views of the same scene. Therefore, this method is called camera auto- (self-) 

calibration. Nowadays, there are a wide variety of camera self-calibration schemes (Faugeras et al., 

1992; Hartley, 1994; Agapito et al., 2001). 

The most common camera model used in the computer vision community is the pinhole model 

(see Fig. 1). In this model the central projection of a 3D point X = (X,Y,Z)
T
 into a point in the image 

plane x = (x,y)
T
 is defined by the crossing of the line joining the camera center C and the 3D point X 

with the image plane. The image plane is the plane Z = f, where f is the focal length. Due to the 

dimension simplification from 3D to 2D, results are only determined up to a non-zero scale w. 

Therefore, in what follows, the sign = means equality up to an unknown scale factor w. Using the 

homogeneous notation, a n-dimensional point in Euclidean space, may be represented as a n+1 vector 

in a projective space. For example,  TZYX ,,X  in Euclidean space becomes   TWZYX ,,,X  . 

Usually, the point X is normalized by W or  1,',','1,,,X ZYX
W

Z

W

Y

W
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Figure 1. Pinhole model with the image plane in front of the camera center. 

  

The camera projection matrix P encapsulates information about the camera’s lens (internal 

parameters) and information about the relative camera’s position and orientation (external 

parameters). The structure of the projection matrix is given by: 

   CIKRtRKP  ||  (2.1) 

where K is a 3 x 3 camera calibration matrix, R is a 3 x 3 rotation matrix, t is a 3 x 1 translation 

vector, C is the 4 x 1 camera center in the 3D world coordinate system, and I is the 3 x 3 identity 

matrix. 

 

2.2. Internal calibration 

The most general expression for the camera calibration matrix K is given by: 
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(2.2) 

where xx mf   , yy mf    , xxmpx 0 , yympy 0  , s the skew factor, f the focal length, and mx 

and my are the number of pixels per unit length in each direction. 

However, the K matrix for most modern cameras can be reduced, with acceptable loss of 

accuracy, to: 
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(2.3) 

where basically the focal length should be defined since the center of the image can be used as 

 yx pp ,
. 

In order to define the K matrix, the method presented in Kim and Hong (2000) has been 

implemented. First, a set of overlapping images J0, J1, …, JN are acquired under a pure rotation of the 

camera. Then, for the images Jq, q = 1, 2, …, N, 2D projective transformations H1, H2, …, HN are 

computed (Hartley and Zisserman, 2003) using point correspondences between images, where           

J0 = Hq Jq and Hq has the form: 

1 KRKH qq  (2.4) 

A 2D projective transformation between a pair of matches X(x,y)   X'(x’,y’) in two images is 

given by: 

iH xx' i   (2.5) 

where H is a 3 x 3 matrix. H has 9 entries but, since it is defined only up to scale H has 8 degrees of 

freedom (Hartley and Zisserman, 2003); therefore 4 pairs of matches are necessary to determine H 

because each pair has 2 degrees of freedom corresponding to the x and y coordinates. 

The matching process between images of the rotating camera uses corners that are detected using 

the Harris’ method (Harris and Stephens, 1988; Mikolajczyk and Schmid, 2003). Then normalized 

cross correlation (Zitova and Flusser, 2003) is used to define putative matches that are refined using a 

voting algorithm based on a similarity transform (Lowe, 2001), and finally, Random Sample 

Consensus (RANSAC) (Fischler and Bolles, 1981) is used to define the projective transformation 

with the biggest support (highest number of inliers). 

 

Internal calibration results 

Once the positions of the cameras have been defined, videos under pure camera rotation (no 

translation) are taken with both cameras. Although pure rotation is assumed, this condition is violated 

most of the times since the precise location of the optical center is unknown and usually the rotation is 

carried out about a known fixed point that is close to the optical center. In order to compare the 

obtained results with different approaches, the software package Camera Calibration Toolbox for 

Matlab of Bouguet (2004) was used to define the camera calibration matrices for each camera used in 

in this study. Using Bouguet (2004) the results were: 
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(2.6) 
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(2.7) 

 On the other hand, results of our implemented method were: 
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(2.8) 
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(2.9) 

where the positions of the principal points are assumed to be in the center of the image. The method 

presented in Bouguet (2004) requires the use of a special pattern and it is appropriate for laboratory 

environments rather than outdoor environments. Additionally, the computational reduction in the 

presented method is substantial. 

 

2.3. External calibration 

Generally, as shown in Fig. 2, the center of the camera does not necessary coincide with the world 

coordinate system (WCS). In this case Eq. (2.1) must be used for the camera projection matrix P since 

the camera coordinate system and the WCS are related by a 3D rotation and a 3D translation, as 

shown in Section 2.1. 

 

Figure 2. General situation where the camera coordinate system does not coincides with the global 

coordinate system. 

 

The problem of camera calibration is to define the projection matrix P given a set of 

correspondences,    T

iiii

T

iii ZYXyx ,,X,x  between 2D (image) and 3D (scene) points, 

respectively. From Eq. (2.1) the 3D to 2D projection is given by: 

  XXx CIRKP 
 (2.10) 

Expanding Eq. (2.1) each correspondence provides a pair of equations, as follows: 
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(2.11) 
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(2.12) 

where 
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(2.13) 
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Equations (2.11) and (2.12) can be expressed as: 
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(2.14) 

where p is a 12-element column vector that is obtained by unwrapping row-by-row the matrix P in 

Eq. (2.13). 

With a minimum of 6 correspondences ii Xx   a system of the form Ap = 0 can be formed by 

stacking equations of the form of Eq. (2.14). Then, the resulting homogeneous system of equations 

can be solved using common methods such as the singular value decomposition (SVD) method which 

provides a linear solution that minimizes Ap under the constraint p = 1. 

The P matrix in the Eqs. (2.1) and (2.13) can be expressed as: 

 4| pMP   (2.15) 

where M is a 3 x 3 matrix formed with the first 3 columns of P, and p4 is the last column of P. 

From Eq. (2.1) it can be derived that the submatrix M corresponds to the product M = KR. M can 

be decomposed into K and R using the RQ-decomposition (Hartley and Zisserman, 2003). The 

translation vector t of P in Eq. (2.1) can be determined as: 

4

1 pKt 
 

(2.16) 

The camera position C with respect to the world coordinate system (WCS), which is the right 

null of P (i.e. PC = 0), can be found using: 

tRC T  (2.17) 

 Further, having defined the camera position C in the world coordinate system with Eq. (2.1) the 

translation vector t and the rotational matrix R can be derived, for which the MATLAB
®
 

implementation of the structure from the motion method for a single moving camera was used as 

presented in Qian and Chellappa (2004).  In fact, two coordinate systems (CS) are used to model the 

motion of the camera. The first CS, called inertial world coordinate system (IWCS), is fixed to the 

initial position of the sensor, while the second CS moves attached to the sensor. Both CS have their 

origins on the centers of projection of the sensor, their X and Y planes parallel to the image planes 

and the Z plane normal to the image planes with their positive half parts pointing toward the observed 

scene. 

The motion of the sensor at time k with respect to the inertial coordinate system is described 

using 5 parameters   ,,,, zyx  where  T

zyx  ,,  are the rotation angles of the 

camera with respect to the IWCS, and α and β are the elevation and azimuth angles of the translation 

of the moving camera with respect to the IWCS. 

A state space model with the state vector kx  and the observation of the image features ky  at the 

stamp time k, can be written as: 

xn k1k xx  (2.18) 

  ynS  kkk ,Projxy
 

(2.19) 

where  T

zyx  ,,,,k x , xn  describes the time varying property of the state vector and  

 Proj  denotes the perspective projection which depends on the camera relative movement with 

respect to the inertial coordinate system ( kx ) and features from the scene structure Sk. 

The translation and rotation matrices can be obtained from the state vector using the Eqs. (2.20 

and 2.21), or: 

             TcT  os , sinsin , cossin,   (2.20) 
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(2.21) 

where  



 Tnnnn 321 ,, ,   cos  and   sin . 

Using this state model, a sequential importance sampling (SIS) (Liu and Chen, 1998) can be 

applied to find an approximation of the posterior distribution of the motion parameters  kk | yxP . 

Due to the total lack of previous information about the camera motion, samples for the motion 

parameters are taken randomly. Normally distributed samples  2,0 N  are used for the rotation 

parameters zyx  ,, , and uniformly distributed samples within the dynamic range of each parameter 

are used for the translation parameters  , . 

For each matched feature obtained from the wide baseline matching (WBM) process, the 

likelihood 
  kk | x
iyf  under a set of motion parameters is evaluated using the epipolar distance from 

the feature position in camera 2 with respect to the epipolar line in the image plane in camera 2, which 

is a function of the motion parameters and the position of the same feature in the image plane of the 

first camera. The weight for a set of motion parameters uses all the feature matching from the WBM 

as given in Eq. (2.22): 

    
M

i

i

kyff
1

kkk ||


 xxY

 

(2.22) 

where M is the number of matching features from the WBM algorithm. Only those motions sets that 

provide positive depths in the matching points will be selected for the resampling process. Given the 

projections x, x' of a 3D point X in the image plane of two cameras, C and C’, and the motion 

parameters between both cameras (R,t), the depth of X can be determined by minimizing the 

projection error in one of the image planes, and can be expressed as: 

     
     yzyzzyxzxzzx

yzyzzyxzxzzx

rvrrtrtrurrtrt

tvtrtrttutrtrt
depth






 

(2.23) 

where   x''1,, 1 Kvu T ,   tttt T

zyx ,,  and   x,, 1 RKrrr T

zyx . The rotation matrix and 

translation vector (R,t), can be obtained from the state vector x  using the Eqs. (2.20) and (2.21). 

The motions sets that have shown good properties, i.e. those that provide positive depths and 

small epipolar distance (high likelihood) for the matching features from the WBM, are resampled 

maintaining a proper weighting in the samples. These samples can be used in a new iteration to 

improve the motion results. In this case, the motion parameters will be added noise in order to provide 

a refinement around each surviving set of motion parameters. 

Once the posterior distribution of the motion parameters have been determined, peaks are found 

in the distributions of every parameter. 

 

External calibration results 

After the videos under pure rotation are taking for the internal calibration process, final positions of 

both cameras are defined and fixed, then a still picture from each camera is used to find feature 

correspondences in both pictures by applying the wide baseline matching process, named SIFT, which 

is described in Section 3. 

A set of results for the structure from motion are presented in Fig. 3. Peaks values are determined 

as: 

    TT

zyx 4,5397    1,5476,    0,0164,    0,0302,-   0,0585,,,,,  x
 

(2.24) 
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Figure 3. Posterior distribution of the sensor motion parameters. 

 

The translation vector and rotation matrix obtained using the Eqs. (2.20) and (2.21) respectively are: 
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(2.26) 

 

The projection matrices for each camera are obtained by replacing the Eqs. (2.25) and (2.26) in Eq. 

(2.1), or: 
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These matrices will be used in Section 4 to obtain the 3D tracking from the 2D tracking information 

of both cameras. 

 

 

3. WIDE BASELINE MATCHING 

 

Cameras providing surveillance of an area have generally wide relative positions. A main step in the 

proposed system is the wide baseline matching (WBM) of the views from both cameras. The problem 

of establishing reliable correspondences in images of the same scene but with different viewpoints, 

requires dealing with different scales, different illumination conditions and different geometric 

transformations between the images. Therefore, well known approaches used in template matching, 

such as the normalized cross correlation methods (Zitova and Flusser, 2003) can not be used. 

One of the WBM methods is the Scale Invariant Feature Transform (SIFT) scheme (Lowe, 

2004), which according to Mikolajczyk and Schmid (2003) results in highly distinctive feature 

descriptors. The adopted SIFT method defines putative matches between images of both cameras 

using an exhaustive search among feature descriptors in both images. In order to determine reliable 

matches from the aforementioned putative matches, a voting algorithm based on a similarity 

transform (Hartley and Zisserman, 2003) and a robust statistical method known as Random Sample 

Consensus, RANSAC (Fischler and Bolles, 1981; Hartley and Zisserman, 2003), is implemented in 

order to select the matches that satisfy the epipolar constraint. 

 

3.1. Detection of invariant features 

Invariant features, also known as keypoints, should be as invariant as possible to scale changes, 

geometric transformations (e.g. affine transform, Ma et al., 2004), and changes in illumination. To 

this end scale-space methods (Lindeberg, 1993) are widely used for finding scale-invariant features. 

Scale-space schemes provide a three-dimensional (3D) representation of an image in the form of 

(x,y,r) where (x,y) are the image spatial coordinates and r represents the scale. In Mikolajczyk and 

Schmid (2004 and 2011) a multi-scale version of the Harris’ corner detector, known as Harris-

Laplace, is presented. Harris-Laplace keypoints are first defined in the (x,y) image coordinates and, 

then, points that correspond to a local maxima through scales, are selected. A similar keypoint 

detector approach is used by Dufournaud et al. (2000) to match images with different resolutions 

(scales). Successful matches are reported in images of the same scene at different spatial resolutions 

but taken from the same viewpoint. 

Detection of local maxima and minima throughout a scale-space domain that is created using a 

difference-of-Gaussian (DOG) is used in Lowe (2004). Only those keypoints that show a high contrast 

and curvature response (Harris and Stephens, 1988) are kept. Jiangjian and Shah (2003) use a novel 

edge-corner affine-invariant feature. First, edges are detected using the Canny edge detector (Canny, 

1986) and, then, a Hough transform is used to find straight lines (and their slopes) through points over 

the previous detected edges. A point is considered as a corner candidate if more than one edge cross 

the point. Finally, Harris’ corner operator (Harris and Stephens, 1988) is applied to measure the 

corner response. Results show that this method outperforms the approach presented in Mikolajczyk 

and Schmid (2011), but a comparison of computational requirements is not available. In Schmid et al. 

(2002) six interest point detectors (Harris and Stephens, 1988; Horaud et al., 1990; Heitger et al., 

1992; Cottier, 1994; Förstner, 1994; Schmid et al., 2002) are evaluated under the criteria of 

repeatability and information content. Repeatability, which shows the geometric stability of the 

detected keypoints under different transformations, is analyzed under changes in rotation, 

illumination, scale, viewpoint and camera noise. 

 

3.2. Keypoint local descriptor 

Once interest points have been localized, a signature has to be assigned to each keypoint in order to 

provide a unique identification. In Lowe (2004) a biological vision based descriptor is presented 
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grounded on the response of complex neurons in the primary visual cortex. The method creates 

descriptors of 128 elements, defined using an array of weighted and oriented histograms around 

keypoints that are found in a scale-space created by means of DOGs. In Mikolajczyk and Schmid 

(2003) an evaluation of six different descriptors is presented. The evaluated descriptors include SIFT 

descriptors (Lowe, 2004), differential invariants (Koenderink and Van Doorn, 1987), moment 

invariants (Van Gool et al., 1996), steerable filters (Freeman and Adelson, 1991), complex filters 

(Schaffalitzky and Zisserman, 2002) and cross correlation (Zitova and Flusser, 2003). Different 

interest point detectors were used as part of the evaluation, and it was concluded that the point 

detector does not influence the ranking of the descriptors. It was also found that the SIFT method of 

Lowe (2004) is the feature descriptor method that presents an overall better detection rate under image 

rotation, scale changes, affine transformations and illumination changes. 

 

3.3. Feature matching 

An exhaustive search can be used to find the nearest neighbors in high dimensional spaces (e.g. 128 in 

Lowe, 2004). Of course, the complexity of the feature matching method depends on the level of 

distinctiveness of the used feature descriptors. Some methods use the minimum Euclidian distance 

among descriptors to find possible matches (Lowe, 2004), while others report the use of the 

Mahalanobis distance (Baumberg, 2000). The epipolar geometry is normally used as a last step in 

almost all matching methods (Pritchett and Zisserman, 1998; Baumberg, 2000; Jiangjian and Shah, 

2003; Lowe, 2004). 

 

3.4. Scheme for Wide Baseline Matching 

The SIFT feature descriptor method (Lowe, 2004) has been adopted as part of the implemented WBM 

scheme since it outperforms other methods (Mikolajczyk and Schmid, 2003). Although SIFT is an 

empirically based method, its descriptors have good invariant properties with respect to image 

rotation, scale, illumination changes and affine transformations. Keypoints can be defined using any 

invariant point detector. Lowe (2004) proposed a method that seeks absolute maxima through a scale–

space map of the image. The main steps of the SIFT method are described in the following. 

 

3.4.1. Scale-space feature detection 

When creating a multi-scale representation of an image, one has to create a family of images at 

different scales, where high frequency information, or fine-scale details, are continuously suppressed 

or diffused. This procedure is called scale-space smoothing or blurring. The Gaussian kernel has been 

shown to be one kernel (Lindeberg, 1993) that can be used to create a scale-space representation of a 

signal in any dimension. Additionally, a Gaussian kernel is self-reproducing as shown below: 

    fGfGGfGG   2121
 (3.1) 

where G  is a Gaussian filter with a standard deviation of σ, f is the filtered signal, 
2
2

2
1

2     

and   represents the convolution operation. Therefore, incremental smoothing can be easily 

implemented. 

A pyramid representation of an image is a stack of successive blurred and subsampled versions 

of the original image. The pyramid is called oversampled when not all the blurred levels are followed 

by a subsampled action. Usually, the subsampling action has to reduce the number of pixels by a 

factor ,2N  where N is the dimension of the signal. In this study N = 2. The image size decreases 

exponentially in pyramids, which implies a reduction in computations at each subsequent stage of the 

pyramid. 

Keypoints in SIFT are found by searching for absolute maxima in a Laplacian pyramid built as a 

difference of low pass filters (DOLP) (Crowley and Stern, 1982). When Gaussian low pass filters are 

used in the DOLP, the DOLP receives the name of Difference of Gaussians (DOG). 
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Let  ,, yxL  be the resulting Gaussian image obtained after convolving the image  yxI ,  with a 

finite Gaussian mask with a standard deviation σ,   ,, yxGG  , then  ,, yxL  can be expressed 

as: 

     yxIyxGyxL ,,,,,    (3.2) 

where: 

 
 

2

22

2

2

2

1
,, 




yx

eyxG




  (3.3) 

then, the DOG image,  ,, yxDOG , can be expressed as the subtraction of two of the 

aforementioned Gaussian images L, as shown in Eq. (3.4): 

     121 ,,,,,,  yxLyxLyxDOG   (3.4) 

where 12   . 

In order to avoid discarding the high frequency information of the image due to the blurring 

applied before the keypoint detection, the image is first upsampled by a factor of two using linear 

interpolation. In Lowe (2004) an oversampled Laplacian pyramid is used that has the following 

parameters: 

 Number of octaves. This is the number of times that the initial σ will be doubled through the 

scale-space; downsampling is applied every time the standard deviation is duplicated. 

 Number of intervals. Represents the number of levels in which the octaves will be divided. 

This number also represents the number of searches for maxima that will be carried out in 

groups of 3 neighboring DOGs. 

The number of intervals, s, defines the step k that the standard deviation of the Gaussian filters 

will take, by the relation: 

sk
1

2  
(3.5) 

Then, the standard deviation of the Gaussian filters that are needed to obtain the Gaussian images by 

convolving directly with the original image  yxI ,  are given by: 

1 nn k
      

1n  (3.6) 

But, using the self-reproducing characteristic of the Gaussian kernel as stated in Eq. (3.1), the 

standard deviation of the Gaussian filters can be found as: 

12
1   knn 

 
(3.7) 

Since the SIFT method finds keypoints by detecting local maxima and minima in a DOG and its 

two immediate neighbors (previous and next), s + 2 number of DOG levels are needed per octave. 

The DOG in which the keypoint was detected will be referred as the “keypoint DOG image”. Let 

 ikyxL ,,  and  1,, ikyxL  be the 2 Gaussian images that were used to create the DOG in which 

the keypoint was detected, the Gaussian image  ikyxL ,,  with the smaller standard deviation, 

  1 ii kk  will be denoted as the “keypoint Gaussian image”. 

Although the number of keypoints increases with s, an optimum value that maximizes the 

repeatability is reached using 3 levels per octave (s = 3). An example of the scale-space of Gaussians 

for three octaves and three intervals per octave is shown in Fig. 4 and the corresponding DOG images 

are shown in Fig. 5. 

Once keypoints have been detected the following two refinement processes are carried out. 

a) Low contrast elimination. Detected keypoints that have low contrast are discarded since they 

are unstable. 
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b) Edge responses elimination. Keypoints that are unstable with respect to small amounts of 

noise can be detected along edges since the DOG has a strong response along edges. These 

keypoints can be eliminated by comparing their responses in all directions. This can be done 

using the Hessian matrix (Harris and Stephens, 1988), given by: 











YYXY

XYXX

DD

DD
H

 

(3.8) 

where the derivatives ,XXD  YYD  and 
XYD are obtained by taking a difference of neighboring 

samples in the DOG image of the keypoint, and finally, keypoints are selected as valid if they 

satisfy the following: 

 
 

 
r

r

H

H 1

Det

Tr
2


  (3.9) 

 where Tr(H) and Det(H) represent the trace and determinant function of the H matrix, 

 respectively. A value of r = 10 is suggested. 

An orientation, and local descriptor will be assigned to the keypoints that satisfy Eq. (3.9). 

 

Figure 4. Scale-space of Gaussians, three octaves and three intervals per octave has been used. 

 

3.4.2. Keypoint orientation 

The keypoint orientations are found by determining the prominent orientations of the weighted 

histogram of the gradient orientations. To provide scale-invariance, the gradient orientation, as well as 

its magnitude, are calculated at each sample position using neighboring sample differences in the 

Gaussian image of the keypoint using the Eqs. (3.10) and (3.11), respectively: 

           22
1,1,,1,1,  yxLyxLyxLyxLyxm

 
(3.10) 

            yxLyxLyxLyxLyx ,1,1/1,1,arctan, 
 (3.11) 
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Figure 5. Difference of Gaussians acquired from subtracting contiguous levels of Gaussians shown in 

Fig. 3. 

 

Figure 6. Keypoints detected on the scale-space of Fig. 3. Arrows' orientations indicate the 

orientation of the keypoints and their sizes are proportional to the magnitude of the gradient. 
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 Since a local descriptor is desired for each keypoint, a circular Gaussian mask centered at the 

considered keypoint is used as a weighting function in order to weight the computed gradient 

orientations. In this way, more emphasis is given to pixels that are close to the keypoint (Lowe, 2004). 

Since a local descriptor is desired for each keypoint, a circular Gaussian mask centered at the 

considered keypoint is used as a weighting function in order to weight the computed gradient 

orientations. In this way, more emphasis is given to pixels that are close to the keypoint. (Lowe, 2004) 

suggests that a standard deviation equals to 1,5 times the standard deviation of the keypoint Gaussian 

image of the keypoint be used for the applied circular Gaussian mask in order to find the gradient 

orientation. Then, a weighted histogram of gradient orientations with 36 bins is created, which 

corresponds to a bin spacing of 10°. The maximum orientation of the created histogram is assigned as 

the orientation of the keypoint. Figure 6 shows the positions of the detected keypoints and their 

orientations illustrated by the directions of the shown arrows, for the scale-space example of Fig. 4. 

 

3.4.3. Local image descriptor 

The last step in SIFT (Lowe, 2004) consists of assigning to each keypoint, a local feature descriptor 

based on the information around the keypoint. For this purpose an array of weighted histograms of 

gradient orientations of the keypoint Gaussian image is used. Lowe (2004) established experimentally 

that a window of 16 x 16 samples, used to create an array of 4 x 4 histograms, provides the highest 

rate of keypoints that match correctly in a database of 40000 keypoints. Histograms of 8 bins, i.e. bins 

of 45° are employed; therefore, keypoints descriptors of 4 x 4 x 8 = 128 elements are assigned. 

 

3.4.4. Feature matching 

Although SIFT descriptors have good distinctiveness properties, i.e. they have information that allows 

to establish similarities among them, accurate matching can not be achieved by just seeking for 

descriptors with smallest Euclidean distances in both images. Therefore, the keypoint matching 

implementation presented in this paper consists of the following steps. 

 

a) Selection of Regions of Interest (ROI). In order to improve the performance of the matching 

ROIs may be selected in one of the images to be matched. ROIs shall not be selected by only 

considering common content in both images, but also by avoiding the consideration of arrays 

of identical features, e.g. rows of identical windows, since wrong matches can be introduced. 

Once the ROI has been selected, Euclidian distances are computed and a group of tentative 

matches, consisting of the closest N matches, is assigned to every keypoint within the selected 

ROIs. Experimentally, we concluded that a value of N = 3 is recommended since bigger 

groups produce mismatches and also represent higher computation requirements. 

 

b) Similarity voting. According to Lowe (2001) the use of a voting algorithm based on a 

similarity transform, performs better with more complex 3D objects, than a one based on an 

affine transform (Lowe, 1990). A similarity transform consists of an isotropic scaling and a 

translation as follows: 
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 (3.12) 

where p is the isotropic scaling factor, θ is a rotation angle and tx,ty represent the translation in 

the x and y directions, respectively. 

 Equation (3.12) can be rewritten as: 
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 where m = p cosθ and n = p sinθ. 

 The voting algorithm consists of solving Eq. (3.13) for every tentative match. 

 

c) Robust matching using epipolar constraint. After these procedures some mismatches can still 

be seen. These mismatches can be reduced by using the statistical method Random Sample 

Consensus (RANSAC) (Fischler and Bolles, 1981; Hartley and Zisserman, 2003) to select 

those matches that satisfy more precisely the constraint of the epipolar geometry. Using 

RANSAC, the fundamental matrix is computed using a set of randomly selected pairs. In the 

present work, the normalized 8 points algorithm was adopted (Hartley, 1997) in which sets of 

eight pairs of matches are used. Then, for each computed F the number of supporting pairs are 

determined as those that satisfy, within some margin of tolerance, the relation: 

0xx' F  (3.14) 

 where x and x' are the tentative matched points, and F is the fundamental matrix. 

The F matrix that gets the largest number of supporting pairs is selected. The supporting pairs 

of the selected F matrix are called inliers and represent the final matching pairs. The matching 

features will be used to determine the relative 3D camera movement (R,t). 

 

Wide baseline matching results 

Tentative matches after the similarity voting are presented in Fig. 7. There are many points that are 

not present in both images. Therefore, the RANSAC algorithm is applied to enforce epipolar 

constrains in both images. Final results of feature matching are presented in Fig. 8. Feature matching 

results for the example presented in Section 2 are shown in Fig. 9. 

 

Figure 7. Tentative matches after similarity voting. 

 

4. 2D AND 3D TRACKING 

 

Three-D tracking of objects that are in the field of view on 2 cameras can be obtained using the 2D 

tracking information of the objects in each of the cameras. Therefore, a 2D tracking system is 

necessary. The core of the 2D implemented tracking system is a background subtraction model. The 

2D tracking information, as well as the projective matrices of both cameras is fed into a triangulation 

algorithm (Hartley and Sturm, 1995) to recover the 3D information of the track. 
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Figure 8. Final matching points using RANSAC to enforce the epipolar constrains in both images. 

 
 

Figure 9. Final matching points applying RANSAC to enforce the epipolar constrains in both images 

of the example presented in Section 2. 

 

4.1. 2D tracking 

The principle of background subtraction methods is to create a model of the scene’s background. This 

background model is then used to determine the foreground as shown in Eq. (4.1), see also Eq. (1.1): 

Thbackgroundframe ii 
 

(4.1) 

where iframe  and 
ibackground
 
represent the frame and the background model at the instant i, and 

Th is a global threshold. 

Different background subtraction methods present different approaches to model the background 

scene. As stated in the Introduction of this paper, the image background is not stable. Therefore, the 

background model needs to be able to cope with camera noise, illumination changes (fast and slow), 

new objects added or removed in the background (e.g. parked cars), and repetitive motion (e.g. tree 

branches) for example. So, the simple approach of frame differentiation can only be used in very 

restricted environments, which is not the case of an outdoor environment. 

The background subtraction used in this work is close to the method presented in Elgammal et al. 

(2002). A set of N previous frames are kept in memory, I1, I2, …, IN. Given a new frame, It at time t = 

N + 1, the probability of each new pixel can be estimated as follows: 
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where j corresponds to the indices of color planes and ∑ j is the standard deviation per pixel and per 

image plane. Then, a pixel is considered to belong to the foreground if the following condition is 

satisfied: 

  Thxt Pr  (4.3) 

where the threshold is global for the whole image. 

Since a normal distribution  2,N  is assumed for every pixel in the image Ii, the distribution 

of the difference of neighbor images,  1 ii II , is also normal given by  22,0 N . The standard 

deviation can be calculated as:  

268.0

m


 
(4.4) 

where m is the median of 1 ii II  for every image Ii in memory. 

Post-processing is applied to the detected foreground information since the resulting foreground 

presents false detections. Morphological erosion with a square mask is applied to eliminate false 

detections; but, since the erosion also eliminates correct foreground, pixel connectivity is done 

between closest neighbors. 

In order to segment different objects in the scene, labeling is applied, and the mass center of the 

detected blobs, formed by a number of pixels higher than a threshold, is extracted. Finally, the 

position of the detected objects are ordered based on the Euclidean distance with respect to the 

position of the objects detected in the previous frame. The resulting 2D track information from both 

cameras is further used in the triangulation procedure. 

 

2D tracking results 

Results of the 2D tracking is presented in Fig. 10. The undesirable effect of the trees and shadows can 

be appreciated in Fig. 10(b). Spurious foreground dots are eliminated by using erosion, the foreground 

image after been eroded by a 2 x 2 mask is shown in Fig. 10(c). Since erosion also carves part of the 

useful foreground, blobs of foreground close to each other with a distance of 15 and 8 pixels along the 

vertical and horizontal directions, respectively, are connected. The mass center of the blobs found in 

Fig. 10(d) are used as the 2D tracking of the object in the image plane of each camera. 

 

4.2. 3D tracking 

The position of a 3D point X can be determined by triangulation given its projections in two cameras 

x and x'. But, from the 2D tracking one does not have any clue about the correspondent object in the 

other camera (when more than one moving object are presents in the field of view); therefore, a cross 

correspondence ought to be established among objects in both cameras previously to apply 

triangulation. 

The fundamental matrix obtained from the wide baseline matching in Section 3 does not provide 

acceptable results since it is determined using points that are not in the plane where people is being 

tracked (building features). Therefore, the fundamental matrix was enriched by including 

correspondences of the people being tracked. 

2D homographies are used in order to find cross correspondences in the 2D tracking information 

of both cameras. Using a set of n random selected points, homographies are computed for all possible 

combinations among the objects in both cameras applying the normalized direct linear transformation 

(NDLT); the inliers of H, defined as those pairs that satisfy 

xx' H  (4.5) 
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within some tolerance, are determined for every H. The homography that gets more support, i.e. more 

inliers pairs is selected and its inliers are included in the enrichment of the fundamental matrix. In Fig. 

11 the result of the cross correspondence among 2D tracks in 2 cameras is presented. 

The fundamental matrix computed using the feature matching from the WBM scheme and the 

cross correspondences among 2D tracks has shown good results when used to establish cross 

correspondences. Figure 12 shows the cross object correspondence established in two cameras. 

 

Figure 10. 2D tracking results: (a) original frame; (b) detected foreground after thresholding the 

difference between the image in (a) from the background model, effects of trees and shadows are 

present; (c) foreground after erosion; and (d) foreground after interconnecting blobs that are close 

enough. 

 

The 2D tracking information after getting an appropriate cross correspondence using the 

improved fundamental matrix, combined with the information obtained from the internal and external 

camera calibration procedures is used to determine the 3D tracks. Given the projective matrices P and 

P' which were computed in Section 3, and the information about the 2D tracking from each camera, a 

triangulation method was used to define the 3D position of the objects (Hartley et al., 1992; Hartley 

and Sturm, 1995). The information provided by the 2D tracking after establishing cross 

correspondences does not provide matches between the 2 camera image planes that satisfy 0'xx F . 

Therefore, for every pair of correspondent points in the 2 camera images ,x'x,  a new pair of 

points 'x̂,x̂   is found, (see Fig. 13). The points x̂  and 'x̂  are the pair of points that minimize the 

following: 

   22
'x̂,x'x̂,x dd 

 
(4.6) 
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under the epipolar constraint given by: 

0'xx F  (4.7) 

 

Figure 11. Matching features used to compute the fundamental matrix, ‘+’ represent the matching 

features obtained from the WBM scheme. ‘•’ represent the 2D tracking cross correspondences 

obtained by using 2D homographies. 

 

 

Figure 12. Cross correspondence established between moving objects by means of the computer 

fundamental matrix including information of the 2D cross correspondences. 

 

 

Figure 13. A pair of approximate correspondences x'x,  and the closest pair 'x̂,x̂   that satisfy 

the epipolar constraints. 
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In Eq. (4.6) d(.,.) represents the Euclidean distance. Note that  xxd ˆ,  and  'ˆ,' xxd  in Eq. (4.6) 

are the distances from the detected points in the 2D tracking to the epipolar lines l and l', respectively. 

The minimization problem is reduced to finding and evaluating the roots of a polynomial of 6
th
 

degree. A linear triangulation method is used with the new resulting pair of correspondences. 

Every point in an image plane can be mapped to a line that contains the camera’s center of 

projection and the point given by: 

xPX R


 

(4.8) 

where XR is known as the reprojection of the point in the image plane x, and P
+
 is the pseudo-inverse 

of the projection matrix P and is given by: 

  1  TT PPPP  
(4.9) 

Given the center of projection for both cameras, C and C', and the points x̂  and 'x̂  in the image 

plane of each camera, two three-dimensional lines are defined, and finally the middle point of the 

smallest segment that joints both lines is considered as the 3D position of the object with projections 

x  and x' in the image plane of camera C and C', respectively. 

 

 

 

Figure 14. Superior view of the 3D tracking results. The depth of the WBM features as well as the 

depth of the 3D tracks agree with the experimental setup. 

 

3D tracking results 

The 3D tracking of the moving objects shown in Fig. 11 as well as the 3D position of the feature 

matching obtained from the WBM scheme shown in Fig. 12 are shown in the Figs. 14 and 15. In the 

experiment the distance between cameras was approximately 7,2 meters and the distance from the 

base of camera C to the base of the building in which most of the WBM matching features were 

detected was approximately 44 meters. Then, considering that the scale factor for the 3D results 

corresponds to the distance between the center of projection of both cameras, it was concluded that 

the depth (Z coordinate) of the WBM features agree with the reality. Additionally, the shape of the 3D 

tracks agrees with the objects’ movement and finally it can be seen that the tracks are contained in a 

plane (the floor). 
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Figure 15. Frontal view of the scene where the moving objects where detected, WBM matching 

features are represented with crosses. The center of coordinate system is on the center of the 

projection of the camera. 

 

 

5. CONCLUSIONS 

 

This work presents contributions in the area of video surveillance and monitoring (VSAM) 

technology. A 3D tracking systems that exploits redundant information in a multiple-camera system, 

has been implemented. A semi-autonomous 3D tracking system was implemented. The system 

requires a minimum of 2 video cameras with a common volume under surveillance, which is a very 

common situation in VSAM systems. The proposed system can operate even when the separation 

between video sensors is wide. For this purpose a wide baseline matching scheme is used in the 

camera calibration process, without the need for pre-measured landmarks. 

 Further research shall be carried out in order to improve the distinctiveness of the SIFT 

descriptors. In Ke and Sukthankar (2004) an improvement to the SIFT descriptors based on Principal 

Component Analysis (PCA), instead of the smoothed weighted histograms of SIFT, is presented. 

Another improvement to the robustness and distinctiveness of SIFT using PCA is described in 

Mikolajczyk and Schmid (2003). The method is called Gradient-Location Orientation Histogram 

(GLOH). Additionally, a 2D tracking system, that is able to run in real-time and handle properly small 

camera movements (due to wind in outdoor cameras), is required to reduce the high computation and 

memory requirements of most existing methods for background subtraction. Finally, research is 

needed to reduce the bandwidth requirements of video streams when transmitted, either wired or 

wireless, to a central processing unit. This will consists in developing a low-power and low-complex 

2D tracking system, that can be incorporated to the video sensors. In this way, only 2D positions need 

to be transmitted to the central processing unit. 
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