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ABSTRACT 

This paper proposes a new hybrid system for multi-class sentiment analysis based on General Inquirer 

(GI) dictionary and a hierarchical Logistic Model Tree (LMT) approach. This new system consists of 

three layers, the Bipolar Layer (BL) is of one LMT (LMT-1) for classifying sentiment polarity, while 

the Intensity Layer (IL) comprises two LTMs (LMT-2 and LMT3) for detecting separately three 

positive and three negative sentiment intensities. Only in construction phase, the Grouping Layer (GL) 

is used to cluster positive and negative instances by employing 2 k-means respectively. In Pre-

processing phase, the raw text data is subjected to a tokenizer, a tagger, a stemmer and finally to GI 

dictionary to count and label only verbs, nouns, adjectives and adverbs with 24 markers that are used 

later to compute feature vectors. In Sentiments Classification phase, feature vectors are first introduced 

to LMT-1, then they are grouped in GL according to class label, afterward these groups of instances 

are labeled manually, and finally positive instances are introduced to LMT-2 and negative instances to 

LMT-3. The three trees are trained and tested on Movie Review and SenTube datasets utilizing 10-

folds stratified cross validation. LMT-1 yields a tree of 48 leaves and 95 of size with 90.88% of 

accuracy, while both LMT-2 and LMT-3 provide two trees of 1 leaf and 1 of size with 99.28% and 

99.37% of accuracy respectively. Experiments show that the proposed hierarchical classification 

methodology gives a better performance compared to other prevailing approaches. 

Keywords: Multi-class sentiments analysis, hybrid approach, logistic model tree, general inquirer 

dictionary (GI). 

 

RESUMEN 

En este trabajo se propone un nuevo sistema híbrido para el análisis de sentimientos en clase múltiple 

basado en el uso del diccionario General Inquirer (GI) y un enfoque jerárquico del clasificador 

Logistic Model Tree (LMT). Este nuevo sistema se compone de tres capas, la capa bipolar (BL) que 

consta de un LMT (LMT-1) para la clasificación de la polaridad de sentimientos, mientras que la 

segunda capa es la capa de la Intensidad (IL) y comprende dos LMTs (LMT-2 y LMT3) para detectar 

por separado tres intensidades de sentimientos positivos y tres intensidades de sentimientos negativos. 

Sólo en la fase de construcción, la capa de Agrupación (GL) se utiliza para agrupar las instancias 

positivas y negativas mediante el empleo de 2 k-means, respectivamente. En la fase de Pre-

procesamiento, los textos son segmentados por palabras que son etiquetadas, reducidas a sus raíces y 

sometidas finalmente al diccionario GI con el objetivo de contar y etiquetar sólo los verbos, los 

sustantivos, los adjetivos y los adverbios con 24 marcadores que se utilizan luego para calcular los 

vectores de características. En la fase de Clasificación de Sentimientos, los vectores de características 

se introducen primero al LMT-1, a continuación, se agrupan en GL según la etiqueta de clase, después 

se etiquetan estos grupos de forma manual, y finalmente las instancias positivas son introducidas a 

LMT-2 y las instancias negativas a LMT-3. Los tres árboles están entrenados y evaluados usando las 

bases de datos Movie Review y SenTube con validación cruzada estratificada de 10-pliegues. LMT-1 

produce un árbol de 48 hojas y 95 de tamaño, con 90,88% de exactitud, mientras que tanto LMT-2 y 

LMT-3 proporcionan dos árboles de una hoja y uno de tamaño, con 99,28% y 99,37% de exactitud, 
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respectivamente. Los experimentos muestran que la metodología de clasificación jerárquica propuesta 

da un mejor rendimiento en comparación con otros enfoques prevalecientes. 

Palabras clave: Análisis de sentimientos en clase múltiple, enfoque híbrido, logistic model tree, 

diccionario general inquirer (GI). 

 

 

1. INTRODUCTION 

 

Sentiment Analysis (SA) or Opinion Mining (OM) systems are employed to help institutions, 

organizations or companies to track automatically their clients' sentiments from a massive raw of data 

found on their websites and social media platforms. Two main tasks are involved in sentiment 

analysis, classifying a polarity of a given text, or determining if it is subjective or objective. These 

tasks could be carried out on three levels; document level, sentence level, and aspect level (Vinodhini 

& Chandrasekaran, 2012). There exist two main approaches to the problem of extracting sentiment 

automatically: The lexicon-based approach and the Machine Learning-based (ML) approach. The 

former utilizes predefined dictionaries of words annotated with their semantic orientation, that are 

used to calculate sentiment polarity of a text, the latter approach, first extracts feature vectors from a 

set of data labeled as positive or negative, then these vectors are classified employing one of the 

supervised ML algorithms, finally the new classifier is used to predict a class for unseen data. A 

hybrid approach can take advantage of both approaches in order to improve the overall SA system 

(Pang & Lee, 2008). N-grams and their frequency, Part Of Speech (POS) information, negation and 

opinion words are considered the most extensively used features in ML sentiment classification. Many 

ML techniques like Naive Bayes (NB), Support Vector Machines (SVM), K-Nearest Neighbor (KNN), 

Maximum Entropy (ME), Decision Tree and rule learner are used vastly to build sentiment classifiers 

(Pang & Lee, 2008). 

Most of approaches in SA field deal with polarity classification, ignoring the degree of users’ 

satisfaction or dissatisfaction about any resource found on social media sites. This fact leads 

sometimes other users to take inaccurate decisions on the same resources, e.g. when they buy a 

product, watch a video or take a course. Detecting several sentiment intensities in a text will help those 

users to access valuable information, improving their choice and the quality of their decisions. In this 

context, a Multi-Class Sentiment Analysis System (MCSAS) is built to extract automatically 

sentiments, expressed in six dimensions, out from English text. These dimensions are: High Positive 

(HP), Positive (P), Low Positive (LP), Low Negative (LN), Negative (N) and High Negative (HN). 

This paper has three objectives. The first objective is to describe the steps taken to build MCSAS 

for document classification using General Inquirer (GI) Dictionary and Logistic Model Tree (LMT) 

algorithm. The second objective is to measure the effectiveness of feature selection on the overall 

performance of sentiment classification. Finally, the third objective is to compare the new system 

experimental results with other research results. 

GI is a computational lexicon compiled from several sources, including Harvard IV-4 dictionary 

and Lasswell value dictionary. It contains information about English word senses, including tags that 

label them in 182 categories Inkpen et al. (2005). There are labels for positive and negative words; 

labels for words of pleasure, pain, virtue, and vice; labels for words indicating overstatement and 

understatement; labels for words of negation and interjections; etc. Inkpen et al. (2005). 

LMT is a supervised machine learning algorithm that combines a standard decision tree with 

Logistic Regression (LR) functions at the leaves. LogitBoost is employed to produce a LR at every 

node in the tree; the node is then split using an attribute value test. Each LogitBoost invocation is 

warm-started from its results in the parent node. Cross validation is used to determine the appropriate 

number of iterations to run. Once the tree has been built it is pruned using CART-based pruning 

Landwehr et al. (2003). 

In this research, two datasets are combined to be used together as a single dataset, the Movie 

Review Dataset and the SenTube Dataset. Movie Review Dataset contains movie reviews along with 

their associated binary sentiment polarity labels split into 1000 positive and 1000 negative documents 
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Pang et al. (2002). SenTube is a dataset of user-generated comments on YouTube videos annotated for 

information content and sentiment polarity Uryupina et al. (2014). The dataset covers English and 

Italian videos on the same products (automobiles, tablets). Sentiment is divided towards the product 

and towards the video. 117 English videos are labeled as positive, 61 as negative and 39 as neutral. 

Each text document in the Combined Dataset (CD) is pre-processed to extract 24 features using GI 

dictionary. These features are: Positiv, Negativ, Pstv, Affil, Negtv, Hostile, Strong, Weak, Submit, 

Active, Passive, Pleasur, Pain, Feel, Arousal, Emot, Virtue, Vice, Ovrst, Undrst, Yes, No, Negate, and 

Intrj (Landwehr et al., 2003). First of all, the first LMT (LMT-1) is trained and tested to model 

sentiment polarity. 

Then, positive and negative instances are grouped separately by 2-Kmeans, each one yields 3 

clusters to represent three different sentiment intensities. Finally, two LMTs, LMT-2 and LMT-3, are 

also trained and tested to model 3 positive sentiment intensities (HP, P, LP) and other 3 negative 

sentiment intensities (HN, N, LN) respectively. The new system consists of three layers; Bipolar Layer 

(BL), Grouping Layer (GL) and Intensity Layer (IL). LMT-1 is located in IL, k-means in GL and 

LMT-2 and LMT-3 in IL. 

The rest of the paper is organized as follows: Section 2 presents related works in sentiment 

analysis. The methodology and the proposed approach architecture are described in section 3. Section 

4 discusses the experiments’ results and compares them with other studies related to hybrid sentiment 

analysis approach. Finally the conclusions and future work are given in section 5. 

 

 

2. RELATED WORK 

 

Early works of sentiment classification mainly focus on polarity detection of English product reviews 

or movie reviews. Pang et al. (2002) examined the effectiveness of NB, ME, SVM for the sentiment 

classification of movie reviews. Unigrams (with negation tagging) and bigrams were employed as 

features. SVM yielded the best results, with 82.9% of accuracy, using unigrams with binary weighting 

indicating the presence or absence of a feature. 

This accuracy was further increased in their later work (Pang & Lee, 2004) to 87.2% by detecting 

subjectivity before classification step and removing objective text. 

Kennedy & Inkpen (2006) present two methods for determining the sentiment expressed by a 

movie review. The first method uses GI to classify customers' reviews based on the number of positive 

and negative terms they contain, as well as negations, overstatements and understatements. Negations 

are used to reverse the semantic polarity of a particular term, while intensifiers and diminishers are 

used to increase and decrease, respectively, the degree to which a term is positive or negative. The 

second method uses a ML algorithm, SVM. Authors start with unigram features and then add bigrams 

that consist of a valence shifter and another word. The accuracy of classification is very high, and the 

valence shifter bigrams slightly improve it. They also demonstrate that combining the two methods 

achieves better results than either method alone. 

The work in Prabowo & Thelwall (2009) combines rule-based classification, supervised learning 

and machine learning into a new method. This method is tested on movie reviews, product reviews 

and MySpace comments. The procedure is that if one classifier fails to classify a document, the 

classifier will pass the document onto the next classifier, until the document is classified or no other 

classifier exists. A number of approaches that focus on acquiring and defining a set of rules are used 

along with SVM learning: General Inquirer Based Classifier (GIBC), Rule-Based Classifier (RBC), 

Statistics Based Classifier (SBC) and Induction Rule Based Classifier (IRBC). Experiments were 

carried out by applying different sequences of previous classifiers. Results showed that the use of 

multiple classifiers in a hybrid manner can improve the effectiveness of sentiment analysis. The 

sequence RBC->SBC-> GIBC->SVM of classifiers yielded the highest accuracy in comparison to 

other classifiers’ sequences. 

Cassinelli & Chen (2009) address the problem of categorizing documents by overall sentiment 

into two classes (positive or negative) and into multiple classes (one to five stars). They use three sets 
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of vocabulary. The first set consists of the positive and negative words from the GI. The second set of 

words includes the most frequent words in the whole Movie Review dataset and the third set consists 

of words learned from applying a boosting classifier to every word in the dataset. For polarity 

classification and using the first set of vocabulary with SVM, they achieved an accuracy of 73.8%, but 

when they run the second and the third sets of features together with SVM and Boosting algorithms, 

they got higher accuracies of 83.55 and 82.95 respectively. For multi-class sentiment classification, 

they used multi-class decision tree and they got low accuracy. 

There are few studies on classifying documents into multi-class sentiment in a hybrid manner and 

using GI dictionary on Movie Review dataset, therefore, this is one of the contribution of this paper. 

However, the work in Wilson et al. (2004) is somewhat related to this paper, where the authors present 

experiments to classify the strength of the opinions and emotions being expressed in individual 

clauses, using boosting, rule learning and support vector regression with a wide range of features, 

including new syntactic features. Results show that boosting algorithm achieves improvements in 

accuracy ranging from 23% to 79% and for vector regression an improvements ranging from 57% to 

64% over baseline. 

An additive model, which uses weighted polarity lexicon, is proposed in another similar study 

(Pandey, 2011). It works well for binary opinion classification and fails to produce impressive results 

for multi-class opinion classification. The authors also use SVM for the same task; the results obtained 

by SVM for multi-class classification are also very low on accuracy as compared to SVM's result on 

binary classification. 

The Machine Learning and NLP group at the University of Trento presents a systematic study on 

SA from SenTube dataset Uryupina et al. (2014) by training a set of supervised multi-class classifiers 

distinguishing between video and product related opinions Severyn et al. (2014). They use standard 

feature vectors augmented by shallow syntactic trees enriched with additional conceptual information. 

 

 

3. METHODOLOGY 

 

MCSAS is built to exploit sentiment information in English text. Fig. 1 illustrates a general block 

diagram of the work flow employed to construct the new multi-class sentiment classifier. The 

methodology consists of two phases: Pre-Processing phase and Classification phase. 

 

3.1. Pre-processing phase 

The primary objective of this phase is to extract feature vectors (FVs) out of documents found in the 

CD={d1, d2, d3,…,dn}, where n is the total labeled documents in the dataset. Each FVi covers the 

occurrence or the total of different word senses in di (where i=1,..,n). In order to accomplish this task, 

the following algorithm is applied: 

1) Translate slang words, acronyms, abbreviations and emoticons found in the raw text di, into 

their original meanings. Internet Slang Dictionary (ISD)
1
 is employed to perform this task and 

it contains 5380 terms originated from various sources including Bulletin Board, AIM, Yahoo, 

Twitter, YouTube, Chat Room and others. 

2) Search contracted words in di and replace them with their original form. 

3) Tag each word using Part-Of-Speech Tagger (POS-Tagger). Words tagged as IN 

(prepositions), DT (determiners), PRP (Personal pronoun), MD (Modal), WRV (Wh-adverb), 

NNP (Proper noun), EX (Existential there) or WP (Wh-pronoun) are ignored and considered 

as stop words. A tagged word is represented by (wj, tj), where tj is the lexical category of the 

word wj and j=1,.., k. 

 

                                                
1
  http://www.internetslang.com 



MASKANA, I+D+ingeniería 2014 

TIC.EC 5 

 

Figure 1. Architecture of MCSAS. 

 

4) Repeat steps from 6 to 16 for each tagged word (wj, tj). 

5) Tokenize the text by breaking it up into words. di={w1, w2, w3, … , wk}, where k is the number 

of token in the document. 

6) Search the word wj in GI dictionary to find its different senses. 

7) If wj is found, go to step 9; otherwise stem it to find its root. This is done using Porter 

Stemming algorithm (Porter, 1980). 

8) Search the stemmed word wj in GI dictionary with its corresponding tag, to avoid ambiguity in 

word senses. 

9) If the stemmed word is found in GI, create the word senses vector WjS={Positivj, Negativj, 

Pstvj, Affilj, Negtvj, Hostilej, Strongj, Weakj, Submitj, Activej, Passivej, Pleasurj, Painj, Feelj, 

Arousalj, Emotj, Virtuej, Vicej, Ovrstj, Undrstj, Yesj, Noj, Negatej, Intrj, NWj} and go to step 

10; otherwise search its synonym in Wordnik Dictionary
2
 and then go to 6. NW indicates if wj 

is an explicit Negation Word. The list of negation words used in this research is:”no, not, 

none, no one, nobody, nothing, neither, nowhere and never” and it is represented by N. WjS is 

a binary vector to indicate the presence or the absence of a sense. At this point, words not 

found in GI Dictionary are considered noise and they are ignored. Additionally, non-English 

words are also discarded; therefore, language detection procedure is not needed. 

10) Calculate Positive Polarity (PPi) by summing up the number of occurrence of the following 

senses: Positiv, Pstv, Affil and Yes in di. This is reflected from (1) to (5). 

 
(1) 

 

                                                
2
  http://www.wordnik.com 
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where: 

 
(2) 

 
(3) 

 
(4) 

 
(5) 



Compute Negative Polarity (NPi) by summing up the number of occurrence of the senses: 

Negativ, Negtv, Hostile, No and Negate in di. This is reflected by (6): 

 (6) 

 

where: 

 
(7) 

 

(8) 

 

(9) 

 

(10) 

 

(11) 

 

11) Count the frequency of explicit negation words (NWi) as in (12): 

 
(12) 
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12) Search in a window of 2 words to detect Positive Polarity Shifter (PPSi) and the Negative 

Polarity Shifter (NPSi) as follows: 

 
(13) 

 
(14) 

 

13) Calculate the Total Positive (TPi) and the Total Negative (TNi) of di by applying (15) and (16): 

 (15) 

 (16) 

 

14) Calculate potency senses as follows: 

 
(17) 

 

(18) 

 
(19) 

 

15) Count the number of occurrence for the reminder senses using the following generic equation: 

 
(20) 

 

Where Sensei could be: Ovrsti, Undrsti, Activei, Passivei, Pleasuri, Paini, Feeli, Arousali, Emoti, 

Virtuei, Vicei or Intrji. 

16) Calculate the percentage of each feature by dividing it by the number of words found in GI. 

The dimension of the final feature vector is 19 of length to represent one document di in CD: 

FVi={TPi, TNi, Strongi, Weaki, Submiti, Activei, Passivei, Pleasuri, Paini, Feeli, Arousali, 

Emoti, Virtuei, Vicei, Ovrsti, Undrsti, Intrji, NWi, Classi}. Classi represents binary sentiment 

polarity labels: Positive or Negative. 

17) Repeat steps from 1 to 17, if there are more documents to pre-process in CD. 

18) CD contains 2178 documents split into 1117 positive and 1061 negative. Due to this 

imbalanced class distribution, three re-sampling techniques were applied, respectively: Re-

sampling without replacement, SMOT and Under-Sampling (Witten et al., 2005). The new 

dataset CD1 contains 2114 vectors, where each 1107 belong to a sentiment class. 

 

3.2. Sentiment classification phase 

In this phase a hierarchical LMT (HLMT) is built to discover multi-class sentiment in English text. It 

consists of three layers; the first layer is called Bipolar layer (BL) and it uses the first LMT (LMT-1) 

for detecting positive and negative sentiments. The second layer is called Grouping Layer (GL), where 

positive and negative instances are grouped separately by 2 k-means, 3 clusters for positive instances 

and other 3 for negative instances. Instances in each cluster are then labeled manually. GL is only used 

in construction phase of MCSAS. The third layer is called Intensity Layer (IL) and it utilizes two 

LMTs (LMT-2, LMT-3) to determine sentiment strength expressed in six levels (three for each LMT). 
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The three LMTs are trained and tested utilizing 10-folds stratified cross validation. The following 

algorithm summarizes the steps followed to construct the HLMT. 

1) Present the dataset CD1. 

2) LMT-1 is trained and tested to model positive and negative instances in dataset CD1. 

3) CD1 is partitioned into two sub-datasets CD11 and CD12 for positive and negative instances 

respectively. 

4) Instances in CD11 are grouped in three clusters employing K-means algorithm. 

5) The 3 generated clusters for positive dimensions (HP, P and LP) are labeled manually and 

then instances in CD11 are saved in a new sub-dataset CDP. 

6) Instances in CD12 are also grouped in three clusters employing K-means algorithm. 

7) The 3 generated clusters for negative dimensions (HN, N and LN) are labeled manually and 

then instances in CD12 are saved in a new sub-dataset CDN. 

8) LMT-2 is trained and tested to model positive intensities in CDP. 

9) LMT-3 is trained and tested to model negative intensities in CDN. 

 

 

4. RESULTS AND DISCUSSIONS 

 

Several experiments are conducted to evaluate the effectiveness of the new approach MCSAS. They 

are performed in two different sets. In the first line of experiments, the performance of the proposed 

feature extraction algorithm is evaluated and compared with TF*IDF algorithm employing six 

different ML algorithms to detect sentiment polarity in BL. In the second line of experiments, the 

accuracy of the LMT-2 and LMT-3 in IL is measured to detect sentiment intensities reflected in six 

classes. Experimental evaluation results are presented in the following subsections. Furthermore, this 

section compares the new proposed approach with the existing studies in SA. 

 

4.1. Feature extraction and bipolar sentiments 

Six ML algorithms: NB, SVM, KNN, Jrip, J48 and LMT are trained and tested, with the objective to 

get the best bipolar sentiment classification. Results are compared with another method of feature 

vector extraction, that is TF*IDF with unigram. TF*IDF method represents the importance of a term 

for a document in a specific corpus (Witten et al., 2005). The accuracy of these algorithms using GI or 

TF*IDF is shown in Table 1. 

 

Table 1. Comparison of ML algorithms accuracy for sentiment polarity classification in BL. 

Feature 

extraction 
NB SVM KNN JRip J48 LMT-1 

GI 66.80 % 72.22 % 91.86% 83.74 % 88.66 % 90.88 % 

TF*IDF 76.45 % 76.75 % 52.80 % 65.93 % 64.10 % 65.70% 

 

As can be observed, the proposed feature method using GI yields, in general, the best results 

when compared with all of other methods. NB with TF*IDF gives a higher accuracy than when it runs 

with GI. Although KNN yields higher accuracy of 91.86 %, LMT is considered, in this research, the 

best choice for bipolar sentiment classification with 90.88% of accuracy, this is due to that LMT uses 

linear functions for predicting new instances, while, KNN makes prediction based on the entire 

training dataset, so its space complexity is represented as O(p*n), where p is the number of features 

and n is the number of training examples. The generated tree of LMT-1 is of size 95 with 48 leaves 

(rules). All ML algorithms are performed with 10-folds stratified cross validation. 

The confusion matrix of the classification accuracy for LMT-1 is given in Table 2, where 2012 

instances (996 positive and 1016 negative) are correctly classified and only 202 instances (111 

positive and 91 negative) are misclassified. 
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Table 2. Confusion matrix of LMT-1 for bipolar layer. 

 Positive Negative 

Positive 996 111 

Negative 91 1016 

 

4.2. Sentiment intensities 

To detect sentiment intensities, the dataset CD1 is divided into two sub-datasets of 1107 (CD11 and 

CD12) instances based on class labels. Instances in both sub-datasets are partitioned separately in three 

clusters using 2 K-means algorithms. The distribution of instances over clusters is illustrated in Table 

3. 19% of them are classified as HP, while 51% and 30% as P and LP intensities. Negative instances 

are also distributed as follows: 21%, 47% and 32% to denote HN, N and LN intensities respectively. 

Labels are assigned manually to each cluster. Thus the new labeled sub-datasets are CDP and CDN. 

 

Table 3. Distribution of positive and negative instances over clusters in GL. 

Dataset Cluster 0 Cluster 1 Cluster 2 

CD11 (Positive)  208 (19%) 565 (51%) 334 (30%) 

CD12 (Negative) 228 (21%) 521 (47%) 358 (32%) 

 

Both sub-datasets (CDP, CDN) are introduced to NB, SVM, KNN, Jrip, J48 and LMT algorithms 

separately, which are also trained and tested using 10-folds stratified cross validation. Table 4 shows 

that LMT-2 and LMT-3 exhibit the highest accuracies with 99.28 % and 99.37 % in comparison to 

other models. They yield 2 trees of size 1 with 1 leave, that is, in prediction phase; only six linear 

functions are used to classify multi-class sentiments expressed in English text, where every three 

functions belong to a sentiment pole. 

The confusion matrix of both trees is reflected in Tables 5 and 6. For P class, 560 out of 565 are 

classified correctly. The rest are classified incorrectly as 3 HP and 2 LP, and so for HN class, where 

225 out of 228 are classified correctly and the rest are misclassified as N and LN. Thus the per class 

accuracies are : 99.03% (206/208) for HP, 99.11% (560/565) for P, 99.70% (333/334) for LP, 99.11% 

(225/228) for LN, 98.88% (354/358) for N and 100% (521/521) for HN. What the confusion matrix 

and the accuracies demonstrate is that the two LMTs (LMT-2 and LMT-3) perform very high in 

classifying positive and negative intensities respectively. 

 

Table 4. Comparison of ML algorithms accuracy for sentiment intensity classification. 

Dataset NB SVM KNN JRip J48 
LMT-2/ 

LMT-3 

CDP (Positive) 93.32 % 97.56% 93.50% 95.48 % 95.03% 99.28 % 

CDN (Negative) 92.14 % 98.28 % 92.77% 93.95% 94.40 % 99.37 % 
 

 

Table 5. Confusion matrix of LMT-2 for positive intensities. 

 HP P LP 

HP 206 (99.03%) 2 0 

P 3 560 (99.11%) 2 

LP 1 0 333 (99.70%) 

 

Table 6. Confusion matrix of LMT-3 for negative intensities. 

 HP P LP 

HP 225 (99.11%) 1 2 

P 1 354(98.88%) 3 

LP 0 0 521(100%) 
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4.3. Comparison and analysis 

The combination of GI dictionary with KNN or LMT for sentiment polarity classification, achieves a 

high accuracy that reaches to 91.86 and 90.88% respectively. These results are considered one of the 

best in comparison with other sentiment classifiers. This is shown in Table 7, which compares the 

proposed algorithm with the studies discussed earlier in section 2. The three studies, Kennedy & 

Inkpen (2006), Prabowo & Thelwall (2009) and Cassinelli & Chen (2009) share many characteristics 

with the present one for polarity classification. They are hybrid classifiers for document level 

sentiment analysis, which use GI Dictionary with supervised machine learning algorithms and Movie 

Review Dataset. 

The study Kennedy & Inkpen (2006) and the present paper take negation words, intensifiers and 

diminishers into account, but the use of a wider range of features with LMT performs better than the 

approach based on SVM with less features. 

The work most closely related to the present one is Severyn et al. (2014), where sentiment 

polarity is determined by using sentiment lexicon and a supervised ML algorithm,. Both studies use 

SenTube dataset, but the present work shows a higher accuracy that reaches to 90.88% and it also uses 

a hierarchical architecture of LMT to detect sentiment intensities in English text. 

The proposed hierarchical architecture of LMT has helped to get a high accuracy in multi-class 

sentiment classification, this is due to the fact that the classification process is done in two stages, 

polarity text is first determined in BL and then its intensity in IL. Unlike the studies presented in 

Wilson et al. (2004) and Pandy (2011), where classification is carried out directly after feature 

extraction phase. Table 8 exhibits a comparison among the studies presented in Section 2 for multi-

class sentiment classification. 

 

Table 7. Comparison of hybrid sentiment classifiers. 

Ref. Dataset Feature Selection Technique 
Accuracy 

% 

BL Movie 

Reviews+ 

SenTube  

24 word senses in GI Dictionary + 

Handling Negation 

LMT 90.88 

KNN 91.86 

Prabowo et al. 

(2009) 

Movie 

Reviews+ 

MySpace 

RBC+SBC+GIBC SVM 90.45 

Kennedy & 

Inkpen (2006) 

Movie review 4 word senses in GI and CTRW 

Dictionaries + Unigram + Bigrams 

+Handling Negation 

SVM 85.9 

Cassinelli & 

Chen (2009) 

Movie Reviews Frequency of positive and negative word 

senses from GI 

SVM 73.8 

Severyn et al. 

(2014) 

SenTub. STRUCT Model: a shallow syntactic tree SVM 70.5 

 

Table 8. Comparison of multi-class sentiment classifiers. 

Ref. Dataset Classes Technique 
Accuracy 

 Average % 

IL Movie Reviews 6 2 LTM 99.30 

Pandy (2011) Multi-Domain Sentiment 

Dataset 

4 SVM 71.73 

Wilson et al. (2004) MPQA (Multi-perspective 

Question Answering) Opinion 

Corpus 

4 BoosTexter 57.52 

Ripper 55.55 

Support 

Vector 

Regression 

36.53 
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4. CONCLUSIONS 

 

The new proposed approach aims at creating automatic multi-class sentiment analysis system which 

uses GI dictionary with a hierarchical architecture of LMT. Experiments have demonstrated that the 

combination of a wide list of features with two-stage classification method has got high accuracies 

reaching 90.88% for polarity sentiment, 99.28% for positive sentiment intensities and 99.37% for 

negative sentiment intensities. Having such reliable automatic sentiment analysis system will allow 

organizations to track users’ opinions on their social media sites and provide them insightful business 

intelligence using which they can take impactful decisions that would leverage their business. 

There are several directions for future work. The first direction is to study the performance of the 

proposed system on other datasets described in the sentiment analysis literature and on multilingual 

data from social media. The second direction is to investigate the influence of incorporating subjective 

and objective features to improve the overall classification accuracy. The third direction is to use the 

new system for building a sentiment – based search engine for YouTube videos. Finally, the fourth 

direction is to find the relationship between users’ personality and their sentiments on social media to 

recommend them appropriate resources adapted to their needs and interests. 
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