Umbrales en la respuesta de humedad del suelo a condiciones meteorológicas en una ladera Altoandina

Palabras clave: humedad del suelo, eventos de lluvia, factores que controlan la humedad del suelo, umbrales de lluvia, ladera de páramo andino

Resumen

El suelo y su cobertura vegetal desempeñan un papel crítico en la hidrología del Páramo Andino, proporcionando escorrentía, principalmente por flujo subsuperficial poco profundo. Comprender la dinámica de la humedad del suelo bajo cobertura vegetal prístina, durante eventos de lluvia, es esencial para la planificación futura de los recursos hídricos, considerando la creciente influencia antrópica. Por lo tanto, este estudio se centra en la evaluación de los controladores y umbrales en el cambio máximo de la humedad del suelo (Δθmax) durante eventos de lluvia y su dinámica durante diferentes condiciones de humedad. Los factores que controlan Δθmax, determinados mediante el coeficiente de correlación de Spearman, fueron el volumen precipitado, la intensidad del evento, la humedad antecedente y las condiciones climáticas previas de 5 y 15 días. El análisis de umbrales reveló una respuesta de aumento o disminución en función del estado de humedad, la posición topográfica y la profundidad del estrato de suelo. Este estudio demuestra que, bajo vegetación prístina del Páramo, la precipitación, la humedad antecedente y las condiciones climáticas, determinan, en gran medida, el estado de humedad del suelo que afecta posteriormente la conectividad de las laderas y su funcionamiento hidrológico.

Descargas

La descarga de datos todavía no está disponible.

Citas

Albertson, J. D., & Kiely, G. (2001). On the structure of soil moisture time series in the context of land surface models. Journal of Hydrology, 243(1), 101-119. http://doi.org/https://doi.org/10.1016/S0022-1694(00)00405-4

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration - Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper, 56. Available at http://www.fao.org/docrep/X0490E/x0490e00.htm#Contents

Blanco, C. M. G., Gomez, V. M. B., Crespo, P., & Ließ, M. (2018). Spatial prediction of soil water retention in a Páramo landscape: Methodological insight into machine learning using random forest. Geoderma, 316, 100-114. http://doi.org/https://doi.org/10.1016/j.geoderma.2017.12.002

Blume, T., Zehe, E., & Bronstert, A. (2009). Use of soil moisture dynamics and patterns at different spatio-temporal scales for the investigation of subsurface flow processes. Hydrology and Earth System Sciences, 13, 1215-1234.

Buttle, J. M., Dillon, P. J., & Eerkes, G. R. (2004). Hydrologic coupling of slopes, riparian zones and streams: an example from the Canadian Shield. Journal of Hydrology, 287(1), 161-177. http://doi.org/https://doi.org/10.1016/j.jhydrol.2003.09.022

Buttle, J. M., & McDonald, D. J. (2002). Coupled vertical and lateral preferential flow on a forested slope. Water Resources Research, 38(5), 16-18. http://doi.org/10.1029/2001WR000773

Buytaert, W., & Beven, K. (2010). Models as multiple working hypotheses : hydrological simulation of tropical alpine wetlands. Hydrological Processes, 25, 1784-1799. http://doi.org/10.1002/hyp.7936

Buytaert, W., Célleri, R., De Bièvre, B., Cisneros, F., Wyseure, G., Deckers, J., & Hofstede, R. (2006). Human impact on the hydrology of the Andean páramos. Earth-Science Reviews, 79(1), 53-72.

Buytaert, W., & De Bièvre, B. (2012). Water for cities: The impact of climate change and demographic growth in the tropical Andes. Water Resources Research, 48(8), 1-13. http://doi.org/10.1029/2011WR011755

Buytaert, W., Iñiguez V., & De Bièvre, B. (2007). The effects of afforestation and cultivation on water yield in the Andean paramo. Forest Ecology and Management, 251(1-2), 22-30. http://doi.org/10.1016/j.foreco.2007.06.035

Buytaert, W., Wyseure, G., De Bievre, B., & Deckers, J. A. (2005). The effect of land-use changes on the hydrological behaviour of Histic Andosols in South Ecuador. Hydrological Processes, 19(20), 3985-3997.

Célleri, R., & Feyen, J. (2009). The hydrology of tropical andean ecosystems: Importance , knowledge status and perspectives. Mountain Research and Development, 29(4),350-355. https://doi.org/10.1659/mrd.00007

Celleri, R., Willems, P., Buytaert, W., & Feyen, J. (2007). Space-time rainfall variability in the Paute basin, Ecuadorian Andes. Hydrological Processes, 21(24), 3316-3327. http://doi.org/10.1002/hyp.6575

Cobos, D. R., & Chambers, C. (2010). Calibrating ECH2O soil moisture sensors. Application Note. Decagon Devices, Pullman, WA, USA. Disponible en http://www.onsetcomp.com/files/15922-C%20Calibrating%20ECH2O%20Soil%20Moisture%20Sensors.pdf

Córdova, M., Carrillo-Rojas, G., Crespo, P., Wilcox, B., & Célleri, R. (2015). Evaluation of the Penman-Monteith (FAO 56 PM) method for calculating reference evapotranspiration using limited data. Mountain Research and Development, 35(3), 230-239.

Correa, A., Windhorst, D., Tetzlaff, D., Crespo, P., Célleri, R., Feyen, J., & Breuer, L. (2017). Temporal dynamics in dominant runoff sources and flow paths in the Andean Páramo. Water Resources Research, 53(7), 5998-6017. http://doi.org/10.1002/2016WR020187

Crespo, P., Célleri, R., Buytaert, W., Feyen, J., Iñiguez, V., Borja, P., & Bievre, B. (2010). Land use change impacts on the hydrology of wet Andean páramo ecosystems. IAHS-AISH publication 2010. Disponible en dspace.ucuenca.edu.ec/bitstream/123456789/ 22092/1/scopus 135.pdf

Crespo, P. J., Feyen, J., Buytaert, W., Bücker, A., Breuer, L., Frede, H.-G., & Ramírez, M. (2011). Identifying controls of the rainfall–runoff response of small catchments in the tropical Andes (Ecuador). Journal of Hydrology, 407(1-4), 164-174. http://doi.org/10.1016/j.jhydrol.2011.07.021

Crockford, R. H., & Richardson, D. P. (2000). Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate. Hydrological Processes, 14(16-17), 2903-2920. http://doi.org/10.1002/1099-1085(200011/12)14:16/17<2903::AID-HYP126>3.0.CO;2-6

Dunkerley, D. (2008). Identifying individual rain events from pluviograph records: a review with analysis of data from an Australian dryland site. Hydrological Processes, 22(26), 5024-5036. https://doi.org/10.1002/hyp.7122

Dusek, J., & Vogel, T. (2016). Hillslope-storage and rainfall-amount thresholds as controls of preferential stormflow. Journal of Hydrology, 534, 590-605. http://doi.org/https://doi.org/10.1016/j.jhydrol.2016.01.047

Famiglietti, J. S., Rudnicki, J. W., & Rodell, M. (1998). Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas. Journal of Hydrology, 210(1), 259-281. http://doi.org/10.1016/S0022-1694(98)00187-5

Gómez-Plaza, A., Alvarez-Rogel, J., Albaladejo, J., & Castillo, V. M. (2000). Spatial patterns and temporal stability of soil moisture across a range of scales in a semi-arid environment. Hydrological Processes, 14(7), 1261-1277. http://doi.org/10.1002/(SICI)1099-1085(200005)14:7<1261::AID-HYP40>3.0.CO;2-D

Graham, C. B., & Lin, H. S. (2011). Controls and Frequency of Preferential Flow Occurrence: A 175-Event Analysis All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any. Vadose Zone Journal, 10, 816-831. http://doi.org/10.2136/vzj2010.0119

Graham, C. B., Woods, R. A., & McDonnell, J. J. (2010). Hillslope threshold response to rainfall: (1) A field based forensic approach. Journal of Hydrology, 393(1), 65-76. http://doi.org/https://doi.org/10.1016/ j.jhydrol.2009.12.015

Grayson, R. B., Western, A. W., & Chiew, F. H. S. (1997). Preferred states in spatial soil moisture patterns. Water Resources Research, 33(12), 2897-2908.

Gwak, Y., & Kim, S. (2017). Factors affecting soil moisture spatial variability for a humid forest hillslope. Hydrological Processes, 31(2), 431-445. http://doi.org/10.1002/hyp.11039

Hardie, M. A., Cotching, W. E., Doyle, R. B., Holz, G., Lisson, S., & Mattern, K. (2011). Effect of antecedent soil moisture on preferential flow in a texture-contrast soil. Journal of Hydrology, 398(3), 191-201. http://doi.org/https://doi.org/10.1016/j.jhydrol.2010.12.008

He, Z., Zhao, W., Liu, H., & Chang, X. (2012). The response of soil moisture to rainfall event size in subalpine grassland and meadows in a semi-arid mountain range: A case study in northwestern China’s Qilian Mountains. Journal of Hydrology, 420-421, 183-190. http://doi.org/10.1016/j.jhydrol.2011.11.056

Heisler-White, J. L., Knapp, A. K., & Kelly, E. F. (2008). Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland. Oecologia, 158(1), 129-140. http://doi.org/10.1007/s00442-008-1116-9

Ivanov, V. Y., Fatichi, S., Jenerette, G. D., Espeleta, J. F., Troch, P. A., & Huxman, T. E. (2010). Hysteresis of soil moisture spatial heterogeneity and the “homogenizing” effect of vegetation. Water Resources Research, 46(9), 1-15. https://doi.org/10.1029/ 2009WR008611

Jost, G., Schume, H., & Hager, H. (2004). Factors controlling soil water-recharge in a mixed European beech (Fagus sylvatica L.)-Norway spruce [Picea abies (L.) Karst.] stand. European Journal of Forest Research, 123(2), 93-104. https://doi.org/10.1007/ s10342-004-0033-7

Kim, S. (2009). Characterization of soil moisture responses on a hillslope to sequential rainfall events during late autumn and spring. Water Resources Research, 45(9), 1-15. http://doi.org/10.1029/ 2008WR007239

Lawrence, J. E., & Hornberger, G. M. (2007). Soil moisture variability across climate zones. Geophysical Research Letters, 34(20), 1-5. doi:10.1029/ 2007GL031382

Lin, H., & Zhou, X. (2008). Evidence of subsurface preferential flow using soil hydrologic monitoring in the Shale Hills catchment. European Journal of Soil Science, 59(1), 34-49. http://doi.org/10.1111/j.1365-2389.2007.00988.x

Liu, X., He, Y., Zhang, T., Zhao, X., Li, Y., Zhang, L., … Yue, X. (2015). The response of infiltration depth, evaporation, and soil water replenishment to rainfall in mobile dunes in the Horqin Sandy Land, Northern China. Environmental Earth Sciences, 73(12), 8699-8708. http://doi.org/10.1007/s12665-015-4125-0

Lozano-Parra, J., Schnabel, S., & Ceballos-Barbancho, A. (2015). The role of vegetation covers on soil wetting processes at rainfall event scale in scattered tree woodland of Mediterranean climate. Journal of Hydrology, 529(Part 3), 951-961. https://doi.org/10.1016/j.jhydrol.2015.09.018

Mosquera, G. M., Célleri, R., Lazo, P. X., Vaché, K. B., Perakis, S. S., & Crespo, P. (2016). Combined use of isotopic and hydrometric data to conceptualize ecohydrological processes in a high-elevation tropical ecosystem. Hydrological Processes, 30(17), 2930-2947. http://doi.org/10.1002/hyp.10927

Mosquera, G. M., Lazo, P. X., Célleri, R., Wilcox, B. P., & Crespo, P. (2015). Runoff from tropical alpine grasslands increases with areal extent of wetlands. Catena, 125, 120-128. http://doi.org/10.1016/ j.catena.2014.10.010

Muñoz, P., Célleri, R., & Feyen, J. (2016). Effect of the resolution of tipping-bucket rain gauge and calculation method on rainfall intensities in an Andean mountain gradient. Water, 8(11), 534. http://doi.org/10.3390/ w8110534

Ochoa-Tocachi, B. F., Buytaert, W., De Bièvre, B., Célleri, R., Crespo, P., Villacís, M., … Arias, S. (2016). Impacts of land use on the hydrological response of tropical Andean catchments. Hydrological Processes, 30(22), 4074-4089. http://doi.org/10.1002/hyp.10980

Oosterbaan, R. J., & Nijland, H. J. (1994). Determining the saturated hydraulic conductivity. Chapter 12, In: Ritzema, H. P. (Ed.). Drainage Principles and Applications, International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands, pp. 1125.

Padrón, R., Wilcox, B., Crespo, P., & Celleri, R. (2015). Rainfall in the Andean Páramo New Insights from High-Resolution Monitoring in Southern Ecuador. Journal of Hydrometeorology, 16(3), 985-996. http://doi.org/10.1175/JHM-D-14-0135.1

Rodriguez-Iturbe, I. (2000). Ecohydrology: A hydrologic perspective of climate-soil-vegetation dynamics. Water Resources Research, 36(1), 3-9.

Sarkar, R., Dutta, S., & Dubey, A. K. (2015). An insight into the runoff generation processes in wet sub-tropics: Field evidences from a vegetated hillslope plot. Catena, 128, 31-43. https://doi.org/10.1016/ j.catena.2015.01.006

Tetzlaff, D., Soulsby, C., Waldron, S., Malcolm, I. A., Bacon, P. J., Dunn, S. M., … Youngson, A. F. (2007). Conceptualization of runoff processes using a geographical information system and tracers in a nested mesoscale catchment. Hydrological Processes, 21(10), 1289-1307. http://doi.org/10.1002/hyp.6309

Tromp-van Meerveld, H. J., & McDonnell, J. J. (2006). Threshold relations in subsurface stormflow: 1. A 147-storm analysis of the Panola hillslope. Water Resources Research, 42(2), n/a--n/a. http://doi.org/10.1029/2004WR003778

van Reeuwijk, L. P. (1993). Procedures for soil analysis. International Soil Reference and Information Centre. Retrieved from https://books.google.com.ec/ books?id=r6QdAQAAMAAJ

Weiler, M., & Naef, F. (2003). An experimental tracer study of the role of macropores in infiltration in grassland soils. Hydrological Processes, 17(2), 477-493. http://doi.org/10.1002/hyp.1136

Wiekenkamp, I., Huisman, J. A., Bogena, H. R., Lin, H. S., & Vereecken, H. (2016). Spatial and temporal occurrence of preferential flow in a forested headwater catchment. Journal of Hydrology, 534(C), 139-149. http://doi.org/https://doi.org/10.1016/j.jhydrol.2015.12.050

Publicado
2018-12-20
Estadísticas
Resumen visto = 88 veces
PDF descargado = 71 veces PDF descargado = 1 veces PDF descargado = 4 veces
Cómo citar
Tenelanda-Patiño, D., Crespo-Sánchez, P., & Mosquera-Rojas, G. (2018). Umbrales en la respuesta de humedad del suelo a condiciones meteorológicas en una ladera Altoandina. Maskana, 9(2), 53-65. https://doi.org/10.18537/mskn.09.02.07
Sección
Artículos científicos