Preparation and Characterization of Catalytic Membrane Reactors

Autores/as

Resumen

Los Reactores Catalíticos de Membrana, RCM, nos dan la posibilidad de optimizar diversos procesos industriales. La versatilidad que tienen los RCM reside en que pueden ejecutar varias funciones, como por ejemplo, filtración, dosificación y catálisis. Este trabajo propone cuatro formas de preparación de RCM en modo contacto interfacial, para ser evaluados en remediación ambiental. Para la preparación de RCM, se emplearon membranas comerciales de fibra hueca de corindón. Como principal fase activa se usó paladio, el cual fue depositado por diferentes métodos tales como impregnación, sputtering (pulverización catódica) y microemulsión; también se usaron nanopartículas de paladio-cobre obtenido por el método del poliol. Los reactores obtenidos fueron probados en la generación in situ de peróxido de hidrógeno y la oxidación de fenol en medio acuoso a presión atmosférica y a temperatura ambiente o a 60°C. Los mejores resultados se obtuvieron con el RCM que contenía paladio por impregnación. Los otros RCM presentaron en todos las pruebas una rápida desactivación.

Catalytic Membrane Reactors, CMR, are well known because of their versatility to develop various industrial processes. This versatility lies in CMR’s ability to run many functions in a single device. These functions can be filtration, dosage and catalysis. This work proposes four ways to prepare CMRs in interface mode to be tested in environmental remediation. For the preparation of Catalytic Membrane Reactors, commercial Hollow Fiber Membranes made of corundum were used. Palladium, as the main active phase, was synthesized by different methods such as impregnation, sputtering and microemulsion. Moreover, copper palladium alloy nanoparticles were obtained by the polyol route. The reactors obtained were tested in aqueous medium, at atmospheric pressure and low reaction temperatures (< 60°C) in the following reactions: in situ generation of hydrogen peroxide and phenol oxidation. The best results were achieved with the CMR with palladium prepared by impregnation. The others CMRs showed fast deactivation in all tests.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Verónica Pinos-Vélez, Universidad de Cuenca

Ingeniera Química. Magister en Gestión Tecnológica, Doctora en Ingeniería Química, Ambiental y de Procesos.

Citas

[1] K. Lin, Ceramic Membranes for Separation and Reaction. England: Wiley, 2007.
[2] G. Barbieri and F. Scura, “Fundamental of Chemical Membrane Reactors,” in Membrane Operations: Innovative Separations and Transformations, Wiley-VCH, 2009, pp. 387–306.
[3] S. Thomas, C. Hamel, and A. Seidel - Morgenstern, “Basic Problems of Chemical Reaction Engineering and Potential of Membrane Reactors,” in Membrane Reactors: Distributing Reactants to Improve Selectivity and Yield, 1st ed., Wiley-VCH, 2010.
[4] F. Gallucci, A. Basile, and F. Ibney Hai, “Introduction: A Review of Membrane Reactors,” in Membranes for Membrane Reactors: Preparation, Optimization and Selection, Wiley, 2011, pp. 1–61.
[5] M. Sanchez and T. Tsotsis, “Introduction,” in Catalytic Membranes and Membrane Reactors., Wiley-VCH, 2002.
[6] T. Westermann and T. Melin, “Flow-through catalytic membrane reactors—Principles and applications,” Chem. Eng. Process. Process Intensif., vol. 48, no. 1, pp. 17–28, Jan. 2009.
[7] J. Caro, “Basic Aspects of Membrane Reactors.” Elsevier, 2010.
[8] A. Cybulski and J. A. Moulijn, Structured Catalysts and Reactors. CRC Press, 2005.
[9] T. T. Tsotsis, A. Champagnie, and P. Liu, “Catalytic Membrane Reactors,” in Computer-Aided Design of Catalysts, R. Becker and C. Pereira, Eds. CRC Press, 1993, pp. 471–550.
[10] M. Sanchez J, and T. T. Tsotsis, Catalytic membranes and membrane reactors. Wiley-VCH, 2002.
[11] S. Miachon and J.-A. Dalmon, “Catalysis in membrane reactors: what about the catalyst?,” Top. Catal., vol. 29, no. 1–2, pp. 59–65, 2004.
[12] R. Dittmeyer, K. Svajda, and M. Reif, “A review of catalytic membrane layers for gas/liquid reactions,” Top. Catal., vol. 29, no. 1–2, pp. 3–27, 2004.
[13] V. Volkov, I. Petrova, V. Lebedeva, V. Roldughin, and G. Tereshchenko, “Palladium-Loaded Polymeric Membranes for Hydrogenation in Catalytic Membrane Reactors,” in Membranes for Membrane Reactors: Preparation, Optimization and Selection, Singapour: Wiley, 2011, pp. 531–548.
[14] J. Caro et al., “Catalytic membrane reactors for partial oxidation using perovskite hollow fiber membranes and for partial hydrogenation using a catalytic membrane contactor,” Ind. Eng. Chem. Res., vol. 46, no. 8, pp. 2286–2294, 2007.
[15] J. Caro, “Catalytic Membrane Reactors – Lab Curiosity or Key Enabling Technology?,” Chem. Ing. Tech., vol. 86, no. 11, pp. 1901–1905, Nov. 2014.
[16] V. P. Pinos, D. G. Crivoi, F. Medina, J. E. Sueiras, and A. I. Dafinov, “New tuneable catalytic membrane reactor for various reactions in aqueous media,” ChemistrySelect, vol. 1, no. 2, pp. 1–3, Feb. 2016.
[17] V. P. Pinos Vélez, “Development and optimization of catalytic membrane reactors applied in wastewater treatments,” info:eu-repo/semantics/doctoralThesis, 2016.
[18] O. Osegueda, A. Dafinov, J. Llorca, F. Medina, and J. Sueiras, “Heterogeneous catalytic oxidation of phenol by in situ generated hydrogen peroxide applying novel catalytic membrane reactors,” Chem. Eng. J., vol. 262, pp. 344–355, Feb. 2015.
[19] O. Osegueda, A. Dafinov, J. Llorca, F. Medina, and J. Suerias, “In situ generation of hydrogen peroxide in catalytic membrane reactors,” Catal. Today, vol. 193, no. 1, pp. 128–136, Oct. 2012.
[20] V. Pinos, A. Dafinov, F. Medina, and J. Sueiras, “Chromium (VI) reduction in aqueous medium by means of catalytic membrane reactors,” J. Environ. Chem. Eng., vol. 4, no. 2, pp. 1880–1889, Jun. 2016.
[21] C.-C. Wang, D.-H. Chen, and T.-C. Huang, “Synthesis of palladium nanoparticles in water-in-oil microemulsions,” Colloids Surf. Physicochem. Eng. Asp., vol. 189, no. 1–3, pp. 145–154, Sep. 2001.
[22] B. T. Meshesha, N. Barrabés, J. Llorca, A. Dafinov, F. Medina, and K. Föttinger, “PdCu alloy nanoparticles on alumina as selective catalysts for trichloroethylene hydrodechlorination to ethylene,” Appl. Catal. Gen., vol. 453, pp. 130–141, 2013.

Descargas

Publicado

2018-02-01