Determinación del Potencial de Generación Eléctrica a Partir de Biomasa en el Ecuador

Autores/as

  • José Serrano Universidad de Cuenca
  • William Mejía INER
  • Juvenal Ortiz Universidad de Cuenca
  • Andrea Sánchez
  • Silvana Zalamea Universidad de Cuenca

Resumen

El consumo energético mundial se ha incrementado con el paso de los años para satisfacer las necesidades de una sociedad altamente demandante. El Ecuador no está exento de esta realidad, dependiendo su economía en gran medida de los combustibles fósiles. Sin embargo, es posible aminorar esta dependencia si se considera a la biomasa proveniente de residuos agrícolas de la producción de cultivos entre los que se destacan el banano, arroz, caña de azúcar y cacao como una potencial fuente de energía. En el presente artículo, se evaluó el potencial de generación de energía eléctrica efectivo de los residuos agrícolas de los cultivos antes mencionados empleando una metodología que contempla la estimación de la disponibilidad real de biomasa, sus poderes caloríficos inferiores y el rendimiento global de planta equivalente de tecnologías de conversión energética de biomasa como la combustión directa CD, la gasificación con turbina de gas GTG, la gasificación con ciclo combinado GCC, y la pirólisis con ciclo combinado PCC. Los resultados muestran que el banano, al presentar la mayor cantidad de residuos producidos por año, posee los mayores potenciales de generación de energía eléctrica: 119,5 GWh mediante CD, 150,3 GWh por medio de GTG, 201,2 GWh a través de GCC y 186,2 GWh mediante PCC.

 

Energy consumption worldwide has increased over the years to meet the needs of a society whose population is increasing. Ecuador is not exempt from this reality; its economy is largely dependent on fossil fuels. However, it is possible to lessen this dependence by considering the biomass from agricultural residues of crop production, among which, banana, rice, sugar cane and cocoa stand out as a potential sources of energy. In the present article, the potential of effective electric power generation of the residues coming from the mentioned crops was evaluated using a methodology that considers the estimation of the real availability of biomass, its low heating values and the overall yield of equivalent plant of technologies of Biomass energy conversion such as direct combustion DC, gasification coupled with gas turbine TGG, gasification with combined cycle CCG, and pyrolysis with combined cycle CCP. The results show that banana, with the largest amount of waste produced per year, has the greatest potential for electricity generation: 119.5 GWh through DC, 150,3 GWh through TGG, 201,2 GWh through CCG and 186.2 GWh by CCP.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

[1] I. N. d. P. d. Ecuador, "Atlas Bioenergético del Ecuador," p. 150, 2014.
[2] E. J. Pelaez Raul, Energías Renovables en el Ecuador. Situación Actual, Tendencias y Perspectivas, Primera edición ed., 2015.
[3] S. E. Hosseini and M. A. Wahid, "Utilization of palm solid residue as a source of renewable and sustainable energy in Malaysia," Renewable and Sustainable Energy Reviews, vol. 40, pp. 621-632, 2014.
[4] S. Gerssen-Gondelach, D. Saygin, B. Wicke, M. K. Patel, and A. Faaij, "Competing uses of biomass: assessment and comparison of the performance of bio-based heat, power, fuels and materials," Renewable and Sustainable Energy Reviews, vol. 40, pp. 964-998, 2014.
[5] A. Bauen, G. Berndes, M. Junginger, M. Londo, F. Vuille, R. Ball, et al., "Bioenergy: a sustainable and reliable energy source. A review of status and prospects," Bioenergy: a sustainable and reliable energy source. A review of status and prospects., 2009.
[6] D. Delgado, "Balance Energético Nacional 2015," ed: Quito-Ecuador, 2015.
[7] S. N. d. P. y. Desarrollo, "Plan Nacional del Buen Vivir," SN Desarrollo, Plan Nacional del Buen Vivir. Quito, 2013.
[8] A. Tanksale, J. N. Beltramini, and G. M. Lu, "A review of catalytic hydrogen production processes from biomass," Renewable and Sustainable Energy Reviews, vol. 14, pp. 166-182, 2010.
[9] B. Kamm, P. R. Gruber, and M. Kamm, "Biorefineries-industrial processes and products," Biorefineries industrial processes and products. Wiley-VCH, Weinheim, 2006.
[10] Y. Yu, X. Lou, and H. Wu, "Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods†," Energy & Fuels, vol. 22, pp. 46-60, 2007.
[11] B. Kamm, P. R. Gruber, and M. Kamm, Biorefineries–industrial processes and products: Wiley Online Library, 2007.
[12] S. Sarkar and B. Adhikari, "Lignin-modified phenolic resin: synthesis optimization, adhesive strength, and thermal stability," Journal of adhesion science and technology, vol. 14, pp. 1179-1193, 2000.
[13] G. W. Huber and J. A. Dumesic, "An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery," Catalysis Today, vol. 111, pp. 119-132, 2006.
[14] A. Carroll and C. Somerville, "Cellulosic biofuels," Annual review of plant biology, vol. 60, pp. 165-182, 2009.
[15] D. L. Klass, Biomass for renewable energy, fuels, and chemicals: Academic press, 1998.
[16] C. Stevens and R. C. Brown, Thermochemical processing of biomass: conversion into fuels, chemicals and power: John Wiley & Sons, 2011.
[17] M. Camps and F. Marcos, "Los biocombustibles," Mundi-Prensa Libros, Madrid, 2008.
[18] L. Ortíz, A. Tejada, A. Vázquez, and G. P. Veiras, "Aprovechamiento de la biomasa forestal producida por la cadena monte-industria," Revista CIS-Madera. Parte III Producción de elementos densificados, pp. 17-32, 2004.
[19] A. Demirbas, "Combustion of biomass," Energy sources, Part A: Recovery, utilization, and environmental effects, vol. 29, pp. 549-561, 2007.
[20] T. Nussbaumer, "Combustion and co-combustion of biomass: fundamentals, technologies, and primary measures for emission reduction," Energy & fuels, vol. 17, pp. 1510-1521, 2003.
[21] K. Hein and J. Bemtgen, "EU clean coal technology—co-combustion of coal and biomass," Fuel processing technology, vol. 54, pp. 159-169, 1998.
[22] N. Peters and B. Rogg, Reduced kinetic mechanisms for applications in combustion systems vol. 15: Springer Science & Business Media, 2008.
[23] R. P. Overend, "Thermochemical conversion of biomass," Renewable Energy Sources Charged with Energy from the Sun and Originated from Earth-Moon Interaction, Evald E. Shpilrain ed., in Encyclopedia of Life Support Systems (EOLSS), developed under the Auspices of the UNESCO. Eolss Publishers, Oxford, 2004.
[24] S. Dasappa, "Thermochemical Conversion of Biomass," Transformation of Biomass: Theory to Practice, pp. 133-157, 2014.
[25] T. Damartzis and A. Zabaniotou, "Thermochemical conversion of biomass to second generation biofuels through integrated process design—A review," Renewable and Sustainable Energy Reviews, vol. 15, pp. 366-378, 2011.
[26] C. Borgnakke and R. E. Sonntag, Fundamentals of thermodynamics: Wiley Global Education, 2016.
[27] R. Van den Broek, A. Faaij, and A. van Wijk, "Biomass combustion for power generation," Biomass and Bioenergy, vol. 11, pp. 271-281, 1996.
[28] P. McKendry, "Energy production from biomass (part 2): conversion technologies," Bioresource technology, vol. 83, pp. 47-54, 2002.
[29] P. Basu, Biomass gasification and pyrolysis: practical design and theory: Academic press, 2010.
[30] A. Pandey, Biofuels: alternative feedstocks and conversion processes: Academic Press, 2011.
[31] J. Rezaiyan and N. P. Cheremisinoff, Gasification technologies: a primer for engineers and scientists: CRC press, 2005.
[32] W. De Jong, Biomass as a Sustainable Energy Source for the Future: Wiley, 2014.
[33] A. V. Bridgwater, "Renewable fuels and chemicals by thermal processing of biomass," Chemical Engineering Journal, vol. 91, pp. 87-102, 2003.
[34] Y. Chhiti and M. Kemiha, "Thermal Conversion of Biomass, Pyrolysis and Gasification," International Journal of Engineering and Science (IJES), vol. 2, pp. 75-85, 2013.
[35] J. Ruiz, M. Juárez, M. Morales, P. Muñoz, and M. Mendívil, "Biomass gasification for electricity generation: review of current technology barriers," Renewable and Sustainable Energy Reviews, vol. 18, pp. 174-183, 2013.
[36] J. V. Kumar and B. C. Pratt, "Determination of calorific values of some renewable biofuels," Thermochimica Acta, vol. 279, pp. 111-120, 1996.
[37] C. Di Blasi, "Modeling chemical and physical processes of wood and biomass pyrolysis," Progress in Energy and Combustion Science, vol. 34, pp. 47-90, 2008.
[38] S. Yaman, "Pyrolysis of biomass to produce fuels and chemical feedstocks," Energy conversion and management, vol. 45, pp. 651-671, 2004.
[39] J. Fan, T. N. Kalnes, M. Alward, J. Klinger, A. Sadehvandi, and D. R. Shonnard, "Life cycle assessment of electricity generation using fast pyrolysis bio-oil," Renewable Energy, vol. 36, pp. 632-641, 2011.
[40] D. Chiaramonti, A. Oasmaa, and Y. Solantausta, "Power generation using fast pyrolysis liquids from biomass," Renewable and sustainable energy reviews, vol. 11, pp. 1056-1086, 2007.
[41] M. d. E. y. E. Renovable, "Atlas Bioenergético del Ecuador " 2014.
[42] F. Rosillo-Calle and J. Woods, The biomass assessment handbook: bioenergy for a sustainable environment: Earthscan, 2012.
[43] J. A. Anaya, E. Chuvieco, and A. Palacios-Orueta, "Aboveground biomass assessment in Colombia: A remote sensing approach," Forest Ecology and Management, vol. 257, pp. 1237-1246, 2009.
[44] V. Dornburg, A. Faaij, P. Verweij, M. Banse, K. v. Diepen, H. v. Keulen, et al., "Biomass assessment: assessment of global biomass potentials and their links to food, water, biodiversity, energy demand and economy: inventory and analysis of existing studies: supporting document," ed: MNP, 2008.
[45] A. Ganesh and R. Banerjee, "Biomass pyrolysis for power generation—a potential technology," Renewable Energy, vol. 22, pp. 9-14, 2001.
[46] A. Franco and N. Giannini, "Perspectives for the use of biomass as fuel in combined cycle power plants," International journal of thermal sciences, vol. 44, pp. 163-177, 2005.
[47] K. R. Craig and M. K. Mann, Cost and performance analysis of biomass-based integrated gasification combined-cycle (BIGCC) power systems: National Renewable Energy Laboratory Golden, CO, 1996.
[48] I. S. Carlos. (2012). Inauguración de la Segunda Etapa del Proyecto de Cogeneración Eléctrica del Ingenio San Carlos.

Descargas

Publicado

2018-02-01