Efecto antiinflamatorio de extractos metanólicos de plantas de Azuay y Loja (Ecuador) a través del modelo de Peces Cebra

Autores/as

  • Eugenia Peñaherrera Universidad de Cuenca
  • Lourdes Jerves-Andrade Universidad de Cuenca
  • Nancy Cuzco Universidad de Cuenca
  • Isabel Wilches Universidad de Cuenca
  • Fabián León-Tamariz Universidad de Cuenca
  • Vladimiro Tobar Universidad de Cuenca

Resumen

Los peces cebra son utilizados como modelo biológico para screening primario de extractos de plantas con potencial bioactividad, aprovechando sus similitudes: gen ética, fisiógica y respuesta farmacológica con los mamíferos. En el estudio se empleó este modelo para valorar la actividad antiinflamatoria de 36 extractos metanólicos de plantas medicinales utilizadas en las provincias de Azuay y Loja (Ecuador). Parte del material vegetal fue recolectado con el aporte de una hierbatera de etnia Saraguro. Los extractos fueron preparados por percolación y su toxicidad fue evaluada en peces cebra en concentraciones variables de 400 a 3,125 μg/ml, determiándose la máxima concentración tolerada para cada uno de éstos. La actividad antiinflamatoria se evaluó a través del ensayo de migración leucocitaria inducida por lipopolisacárido de Sallmonella typhi. Los extractos de: Cestrum aff. peruvianum, Galinsoga parviflora, Galium sp., Oenothera tetraptera, Peperomia aff. galioides , Passiflora ampullaceae y Ambrosia arborescens, correspondientes al 18,92% de los analizados, mostraron un potencial antiinflamatorio comparable con indometacina y dexametasona; siendo el extracto metanólico de Cestrum aff. peruvianum el más relevante a 50 g/ml. El análisis fitoquímico básico de los extractos se realizó por cromatografía de capa fina, evidenciándose la presencia de saponinas y terpenoidoes como compuestos principales en la mayoría de los extractos.

The biological model of zebrafish has been widely used in primary screening of plant extracts for antiinflammatory effect, due to its genetic, physiological and pharmacological response similarities to mammals. The present study evaluated the antiinflammatory activity of 36 methanol extracts prepared from medicinal plants used by communities in the provinces of Azuay and Loja (Ecuador). The plant material was collected with the support of a Saraguro herbalist. The extracts were prepared by percolation and the toxicity was evaluated in zebrafish model at concentrations ranging from 400 to 3,125 μg/ml; determining the maximum tolerable concentration. The antiinflammatory activity was analyzed by using the leukocyte migration test induced by lipopolysaccharide of Sallmonella typhi. Extracts of: Cestrum aff. peruvianum, Galinsoga parviflora, Galium sp., Oenothera tetraptera, Peperomia aff. galioides , Passiflora ampullaceae and Ambrosia arborescens, equivalent to 18,92% of the analyzed ones, have antiinflammatory potential comparable with the positive controls indomethacin and dexamethasone; being the methanol extract of Cestrum aff. Peruvianum (50 μg/ml), the most relevant. The phytochemical analysis of the extracts by Thin Layer Chromatography showed the presence of saponins and terpenoids as the principal components in most of the extracts.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

[1] L. I. Zon and R. T. Peterson, “In vivo drug discovery in the zebrafish,” Nat. Rev. Drug Discov., vol. 4, no. 1, p. 3544, 2005.
[2] M. Matthews, B. Trevarrow, and J. Matthews, “A virtual tour of the guide for zebrafish users,” Resource, vol. 31, p. 3440, 2002.
[3] A. D. Crawford, C. V. Esguerra, and P. A. de Witte, “Fishing for drugs from nature: zebrafish as a technology platform for natural product discovery,” Planta Med., vol. 74, no. 6, p. 624632, 2008.
[4] H. P. Rang, Farmacologa: Rang y Dale. Barcelona: Elsevier, 2008.
[5] O. Barreiro and F. S´anchez-Madrid, “Bases moleculares de las interacciones leucocito-endotelio durante la respuesta inflamatoria,” Rev. Esp. Cardiol., vol. 62, no. 5, p. 552562, 2009.
[6] M. Hamalainen, R. Nieminen, P. Vuorela, M. Heinonen, and E. Moilanen, “Antiinflammatory effects of flavonoids: Genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages,” Mediators Inflamm., pp. 1–10, 2007.
[7] G. J. Lieschke, “Fluorescent neutrophils throw the spotlight on inflammation,” Mediators Inflamm., vol. 108, no. 13, p. 39613962, 2006.
[8] M. L. Cordero-Maldonado, D. Siverio-Mota, L. Vicet-Muro, I. M. Wilches-
ArizAbala, C. V. Esguerra, P. A. M. de Witte, and A. D. Crawford, “Optimization and pharmacological validation of a leukocyte migration assay in zebrafish larvae for the rapid in vivo bioactivity analysis of anti-inflammatory secondary metabolites,” PLoS ONE, vol. 8, no. 10, p. e75404, 2013.
[9] C. A. dAlencon, O. A. Pe˜na, C. Wittmann, V. E. Gallardo, R. A. Jones, F. Loosli, U. Liebel, C. Grabher, and M. L. Allende, “A high-throughput chemically induced inflammation assay in zebrafish,” PLoS ONE, vol. 8, no. 1, p. 151, 2010.
[10] M. R´ıos, Plantas ´utiles del Ecuador: aplicaciones, retos y perspectivas. Ecuador: Ediciones Abya-Yala, 2007.
[11] L. de la Torre, Enciclopedia de las plantas útiles del Ecuador. Ecuador: Herbario AAU del Departamento de Ciencias Biolgicas de la Universidad de Aarhus, 2008.
[12] W. H. Organization, WHO guidelines on good agricultural and collection practices (GACP) for medicinal plants. Geneva: World Health Organization, 2003.
[13] J. F. Muñoz and D. G. Sarmiento, Valoración comparativa de dos métodos de secado de plantas medicinales a través de la cuantificaci´on de flavonoides y cumarinas, 2010.
[14] W. P. Jones and A. D. Kinghorn, “Extraction of plant secondary metabolites,” Natural products isolation, vol. 864, p. 323351, 2005.
[15] R. Voigt, M. Bornschein, and A. N. Cachaza, Tratado de tecnologa farmacutica. Acribia, 1982.
[16] M. Westerfield, The zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio). University of Oregon Press, 2000.
[17] S. A. Renshaw, C. A. Loynes, D. M. Trushell, S. Elworthy, P. W. Ingham, and M. K. Whyte, “A transgenic zebrafish model of neutrophilic inflammation,” Natural products isolation, vol. 108, no. 13, p. 39763978, 2006.
[18] J. R. Mathias, B. J. Perrin, T.-X. Liu, J. Kanki, A. T. Look, and A. Huttenlocher, “Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish,” J. Leukoc. Biol., vol. 80, no. 6, p. 12811288, 2006.
[19] “Merck, 116303 leucognost pox,” http://www.merckmillipore.com/INTL/ en/product/LEUCOGNOST-POX,MDA CHEM-116303#anchor PI, accessed: 2016-01-07.
[20] R. Core Team, “The R project for statistical computing,” R Proj. Stat. Comput., 2014.
[21] D. C. Montgomery, Design and Analysis of Experiments. John Wiley and
Sons, 2008.
[22] D. Shehnaz, F. Hamid, F. T. Baqai, and V. Uddin, “Effect of the crude extract of cestrum parqui on carrageenin-induced rat paw oedema and aggregation of human blood platelets,” Phytother. Res., vol. 13, no. 5, p. 445447, 1999.
[23] M. Kawano, M. Otsuka, K. Umeyama, M. Yamazaki, T. Shiota, M. Satake, and E. Okuyama, “Anti-inflammatory and analgesic components from hierba santa, a traditional medicine in peru,” J. Nat. Med., vol. 63, no. 2, p. 147158, 2009.
[24] S. B. Baños, L. L. B. Necha, A. N. Hernández, and D. G. Sánchez, “Polvos, extractos y fracciones de hojas de cestrum nocturnum l. y su actividad antifngica en dos aislamientos de fusarium spp.” Rev. UDO Agr´ıc., vol. 8, no. 1, p. 4251, 2008.
[25] U. S. Akula and B. Odhav, “In vitro 5-lipoxygenase inhibition of polyphenolic antioxidants from undomesticated plants of south africa,” J. Med. Plants Res., vol. 2, no. 9, p. 207212, 2008.
[26] A. Bazylko, M. Stolarczyk, M. Derwiska, and A. K. Kiss, “Determination of antioxidant activity of extracts and fractions obtained from galinsoga parviflora and galinsoga quadriradiata, and a qualitative study of the most active fractions using tlc and hplc methods,” Nat. Prod. Res., vol. 26, no. 17, p. 15841593, 2012.
[27] P. Bolivar, C. Cruz-Paredes, L. R. Hernández, Z. N. Juárez, E. Sánchez-Arreola, Y. Av-Gay, and H. Bach, “Antimicrobial, anti-inflammatory, antiparasitic, and cytotoxic activities of galium mexicanum,” J. Ethnopharmacol., vol. 137, no. 1, p. 141147, 2011.
[28] M. Gebrelibanos, C. Veeresham, and K. Asres, “Preliminary phytochemical and antibacterial screening on extracts of the aerial parts of galium spurium (subspecies-africanum),” Int. J. Pharm. Sci. Res., vol. 3, no. 8, p. 2712, 2012.
[29] G.-J. Yoon, Y. M. Ham, B.-S. Yoo, J.-Y. Moon, J. Koh, and C.-G. Hyun, “Oenothera laciniata inhibits lipopolysaccharide induced production of nitric oxide, prostaglandin e 2, and proinflammatory cytokines in raw264. 7 macrophages,”J. Biosci. Bioeng., vol. 107, no. 4, p. 429438, 2009.
[30] S. Granica, M. E. Czerwi´nska, J. P. Piwowarski, M. Ziaja, and A. K. Kiss, “Chemical composition, antioxidative and anti-inflammatory activity of extracts prepared from aerial parts of oenothera biennis l. and oenothera paradoxa hudziok obtained after seeds cultivation,” J. Agric. Food Chem., vol. 61, p. 801810, 2013.
[31] S. Singh, R. Kaur, and S. K. Sharma, “An updated review on the oenothera genus,” J Chin Integr Med, vol. 10, p. 717725, 2012.
[32] T. Yoshida, Y. Amakura, and M. Yoshimura, “Structural features and biological properties of ellagitannins in some plant families of the order myrtales,” Int. J. Mol. Sci., vol. 11, no. 1, pp. 79–106, 2010.
[33] G. Marcial, C. Rodríguez, G. F. de Valdez, and M. Medici, “New approaches in gastritis treatment,” Gastritis and Gastric Cancer - New Insights in Gastroprotection, Diagnosis and Treatments, INTECH Open Access Publisher, 2011.
[34] L. F. Villegas, A. Marcalo, J. Martin, I. D. Fern´andez, H. Maldonado, A. J. Vaisberg, and G. B. Hammond, “(+)-ep i--bisbolol is the wound-healing principle of peperomia ga lioides: Investigation of the in vivo wound-healing activity of related terpenoids,” J. Nat. Prod., vol. 64, no. 10, p. 13571359, 2001.
[35] M. F. Arrigoni-Blank, R. L. Oliveira, S. S. Mendes, P. A. Silva, A. R. Antoniolli, J. C. Vilar, S. C. Cavalcanti, and A. F. Blank, “Seed germination,
phenology, and antiedematogenic activity of peperomia pellucida (L.) HBK,”
BMC Pharmacol., vol. 2, no. 1, p. 12, 2002.
[36] J. P. Beninc´a, A. B. Montanher, S. M. Zucolotto, E. P. Schenkel, and T. S. Frode, “Evaluation of the anti-inflammatory efficacy of passiflora edulis,” Food Chem., vol. 104, no. 3, p. 10971105, 2007.
[37] A. J. Vargas, D. S. Geremias, G. Provensi, P. E. Fornari, F. H. Reginatto, G. Gosmann, E. P. Schenkel, and T. S. Frode, “Passiflora alata and passiflora edulis spray-dried aqueous extracts inhibit inflammation in mouse model of pleurisy,” Fitoterapia, vol. 78, no. 2, p. 112119, 2007.
[38] R. Villagomez, G. C. Rodrigo, I. G. Collado, M. A. Calzado, E. Muñoz, B. Akesson, O. Sterner, G. R. Almanza, and R.-D. Duan, “Multiple anticancer effects of damsin and coronopilin isolated from ambrosia arborescens on cell cultures,” Anticancer Res., vol. 33, no. 9, pp. 3799–3805, 2013.

Descargas