UV-Vis, FTIR and antioxidant study of Persea Americana (Avocado) leaf and fruit: A comparison

Autores/as

  • Brajesh Kumar Universidad de las Fuerzas Armadas ESPE
  • Luis Cumbal Universidad de las Fuerzas Armadas ESPE

Resumen

Avocado (Persea americana Miller), a well-known nutritional tree crop grown in many parts of the world. The present study compares the UV-Vis and Fourier transform infrared spectroscopy (FTIR) spectrum of Avocado leaf and fruit (peel, pulp, and oil) cultivated in Ecuador; and further its antioxidant activity is evaluated against 1,1-diphenyl-2-picrylhydrazyl (DPPH•). The UV-Vis and FTIR study revealed predominant amount of flavonoids. Among the Avocado leaf and fruit studied, the DPPH• free radical scavenging assay for Avocado leaf had the highest antioxidant activity ranging from 84.46 % to 80.12% with values from 32.60-32.73 μg gallic acid equivalents per mL. It showed that the order of antioxidant activity in Avocado is leaf > peel > oil > pulp. The antioxidant activity had a positive correlation with total flavonoid content and these plant extracts (specially Avocado leaf) are useful for future antioxidant products.

El aguacate (Persea americana Miller) es una conocida fruta arbórea con un alto contenido nutricional que crece en varias partes del mundo. El presente estudio compara los espectros del UV-Vis y del espectrómetro infrarrojo con transformada de Fourier (FTIR) de la fruta y de la hoja de aguacate (cáscara, pulpa y aceite) cultivado en Ecuador y posteriormente evalúa su actividad antioxidante empleando el 1,1-difenil-2-picrilhidrazil (DPPH•). El estudio de los espctros UV-Vis y FTIR revel´o que el aguacate tiene predominantemente flavonoides. Entre la hoja y el fruto del aguacate, se comprobó mediante el ensayo DPPH• (captura de radicales libres), que la hoja tuvo una mayor actividad antioxidante, la que oscila entre 84,46% y 80,12%, con valores de 32.60-32.73 μg equivalentes de ácido gálico por mL. Se demostró que el orden de la actividad antioxidante de los extractos es: hoja de aguacate > cáscara > aceite > pulpa. La actividad antioxidante tuvo una correlación positiva con el contenido total de flavonoides y estos extractos de plantas (especialmente de las hojas del aguacate) son útiles para el desarrollo de futuros productos antioxidantes.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

[1] M. Reddy, R. Moodley, and S. B. Jonnalagadda, “Fatty acid profile and elemental content of avocado (persea americana mill.) oil -effect of extraction methods,” Journal of Environmental Science and Health, Part B, vol. 47, pp.
529–537, 2012.
[2] F. Ozdemir and A. Topuz, “Changes in dry matter, oil content and fatty acids composition of avocado during harvesting time and post-harvesting ripening period,” Food Chemistry, vol. 86, pp. 79–83, 2004.
[3] R. G. D. Pamplona, Encyclopedia of Medicinal Plant. Spain: Grafica Reunide, 1999.
[4] C. Lima, C.R.and Vasconcelos, J. Costa-Silva, C. Maranho, J. Costa, T. Batista, E. Carneiro, L. Soares, F. Ferreira, and A. Wanderley, “Antidiabetic activity of extract from persea americana mill. leaf via the activation of protein kinase B (PKB/Akt) in streptozotocin-induced diabetic rats,” Journal of Ethnopharmacology, vol. 141, pp. 517–525, 2012.
[5] O. Adeyemi, S. Okpo, and O. Ogunti, “Analgesic and anti-inflammatory effects of the aqueous extract of leaves of persea americana mill (lauraceae,” Fitoterapia, vol. 73, pp. 375–380, 2002.
[6] E. Swisher, “Avocado oil from food use to skin care,” Journal of the American Oil Chemists’ Society, vol. 65, p. 17041706, 1998.
[7] C. Amunziata, M. Massaro, and L. Siculella, “Oleic acid inhibits endothelial activation,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 19, p. 220228, 1999.
[8] M. Carranza, A. Herrera, M. Alvizouri, J. Alvarado, and C. Chavez, “Effects of vegetarian diets vs. a vegetarian diet enriched with avocado in hypercholesterolemic patients,” Archives of Medical Research, vol. 28, pp. 537–541, 1997.
[9] J. Lee, N. Koo, and D. Min, “Reactive oxygen species, aging and antioxidative nutraceuticals,” Comprehensive Reviews in Food Science and Food Safety, vol. 3, pp. 21–33, 2004.
[10] B. Bergh, “Nutritious value of avocado,” California Avocado Society Yearbooks, vol. 76, p. 123, 1992.
[11] E. Karimi, H. Jaafar, and S. Ahmad, “Phenolics and flavonoids profiling and antioxidant activity of three varieties of malaysian indigenous medicinal herb labisia pumila benth,” Journal of Medicinal Plants Research, vol. 5, no. 7, pp. 1200–1206, 2011.
[12] S. C. Forester and J. D. Lamber, “The role of antioxidant versus pro-oxidant effects of green tea polyphenols in cancer prevention,” Molecular Nutrition and Food Research, vol. 55, pp. 84–854, 2011.
[13] S. Mohanty, K. Mallappa, A. Godavarthi, B. Subbanarasiman, and
A. Maniyam, “Evaluation of antioxidant, in vitro cytotoxicity of micropropagated and naturally grown plants of leptadenia reticulata (retz.) wight & arn.-an endangered medicinal plant,” Asian Pacific journal of Tropical Medicine, vol. 7, pp. 267–271, 2014.
[14] J. Canadanovi´c-Brunet, G. ´Cetkovi´c, S. Djilas, V. Tumbas, S. Savatovi´c, and A. Mandi´c, “Radical scavenging and antimicrobial activity of horsetail (equisetum arvense l.) extracts,” International Journal of Food Science & Technology, vol. 44, pp. 269–278, 2009.
[15] C. Ao, A. Li, A. Elzaawely, T. Xuan, and S. Tawata, “Evaluation of antioxidant and antibacterial activities of (ficus microcarpa l. fil. extract,” Food Control, vol. 19, pp. 940–948, 2008.
[16] D. Kim, S. Jeong, and C. Lee, “Antioxidant capacity of phenolic phytochemicals from various cultivars of plums,” Food Chemistry, vol. 81, pp. 321–326, 2003.
[17] O. Sharma and T. Bhat, “DPPH antioxidant assay revisited,” Food Chemistry, vol. 113, pp. 1202–1205, 2009.
[18] P. Eklund, O. Langvik, J. Warna, T. Salmi, S. Willfor, and R. Sjoholm, “Chemical studies on antioxidant mechanisms and free radical scavenging properties of lignans,” Organic and Bimolecular Chemistry, vol. 21, pp. 3336–3347, 2005.
[19] L. C. B. Kumar, K. Smita and Y. Angulo, “Fabrication of silver nanoplates using nephelium lappaceum (rambutan) peel: A sustainable approach,” Journal of Molecular Liquids, vol. 211, pp. 476–480, 2015.
[20] B. Kumar, K. Smita, L. Cumbal, A. Debut, and Y. Angulo, “Biofabrication of copper oxide nanoparticles using andean blackberry (rubus glaucus benth.) fruit and leaf,” Journal of Saudi Chemical Society, pp. –, 2015.
[21] J.-G. Rodríguez-Carpena, D. Morcuende, M.-J. Andrade, P. Kylli, and M. Estevez, “In vitro antioxidant and antimicrobial activities, and inhibition of lipid and protein oxidation in porcine patties,” Journal of Agricultural and Food Chemistry, vol. 59, pp. 5625–5635, 2011.
[22] A. Torres, T. Mau-Lastovicka, and R. Rezaaiyan, “Total phenolics and highperformance liquid chromatography of phenolic acids of avocado,” Journal of Agricultural and Food Chemistry, vol. 35, pp. 921–925, 1987.
[23] N. Quiñones Islas, O. Meza-Márquez, G. Osorio-Revilla, and T. Gallardo-Velazquez, “Detection of adulterants in avocado oil by mid-ftir spectroscopy and multivariate analysis,” Food Research International, vol. 51, pp. 148–154, 2013.
[24] S. Nile and S. Park, “Hptlc analysis, antioxidant and antigout activity of indian plants,” Iranian Journal of Pharmaceutical Research, vol. 13, pp. 531–539, 2014.
[25] S. Wani, F. Masoodi, T. A. Wani, M. Ahmad, A. Gani, and S. Ganai, “Physical characteristics, mineral analysis and antioxidant properties of some apricot varieties grown in north india,” Cogent Food & Agriculture, vol. 1, pp. 1–10, 2015.

Descargas