Modelado cinético y matemático de la reacción de gasificación catalítica de la glucosa en agua en condiciones supercríticas para la producción de hidrógeno
Resumen
El Hidrógeno producido a partir de la biomasa procedente de los residuos de la planta de banano es considerado como un combustible altamente eficiente. Uno de los métodos más limpios para su obtención es la gasificación catalítica en agua en condiciones supercríticas, en donde se transforman los polisacáridos constitutivos de la biomasa (celulosa, hemicelulosa y lignina) en productos gaseosos de elevado valor. En el desarrollo de la reacción de gasificación es importante el diseño de un reactor de forma que este proporcione el hidrógeno de manera segura y respetuosa con el medio ambiente. De los elementos que determinan el diseño de un reactor, en este artículo se estudiaron la cinética intrínseca y el balance de materia. En la cinética de la reacción se tomó como compuesto modelo de la biomasa a la glucosa, por ser el grupo estructural representante de la celulosa. Se develaron las diferentes reacciones intermedias que influyen en el rendimiento a hidrógeno. Posteriormente, se planteó la ecuación de balance diferencial para la glucosa, modelo matemático que fue resuelto mediante Fortran 95 aplicando el algoritmo numérico de Thomas. Los resultados obtenidos revelaron que a fracciones másicas más bajas de glucosa los niveles de conversión son más elevados.
Hydrogen produced from banana biomass waste is considered as a highly efficient biofuel. One of the cleanest methods for its obtention is the catalytic supercritical water gasification, wherein the constituent polysaccharides of biomass (cellulose, hemicellulose and lignin) convert into high value gaseous products. It is important the design of a chemical reactor for this process due to the necessity of achieving the hydrogen production in a reliable way. Among the elements that determine the reactor design, in this article were studied the intrinsic kinetic and material balance. First, a kinetic study of the reaction was performed using the glucose as model compound owing to it is the most important structural component of the cellulose. It was revealed several intermediate reactions that influenced on the yield for hydrogen. Later, it was performed a differential species balance for the glucose. It was solved in Fortran 95 applying the Thomas numerical algorithm. The results showed that at lower mass fractions of glucose, the higher levels of conversion
Descargas
Citas
[2] Y. Guo, S. Wang, D. Xu, Y. Gong, H. Ma, and X. Tang, “Review of catalytic supercritical water gasification for hydrogen production from biomass,” Renewable and Sustainable Energy Reviews, vol. 14, pp. 334–343, 2010.
[3] A. Tanksale, J. N. Beltramini, and G. M. Lu, “A review of catalytic hydrogen production processes from biomass,” Renewable and Sustainable Energy Reviews, vol. 14, pp. 166– 182, 2010.
[4] M. Ni, D. Y. Leung, M. K. Leung, and K. Sumathy, “An overview of hydrogen production from biomass,” Fuel processing technology, vol. 87, pp. 461–472, 2006.
[5] J. Ogden, M. Steinbugler, and T. Kreutz, “Hydrogen as a fuel for fuel cell vehicles: a technical and economic comparison,” in 8th Annual Conference, Arlington. National Hydrogen Association, 1997.
[6] H. Balat and E. Kirtay, “Hydrogen from biomasspresent scenario and future prospects,” International Journal of Hydrogen Energy, vol. 35, pp. 7416–7426, 2010.
[7] A. Demirbas, “Hydrogen production from biomass via supercritical water gasification,”Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 32, pp. 1342–1354, 2010.
[8] B.-S. Huang, H.-Y. Chen, K.-H. Chuang, R.-X. Yang, and M.-Y. Wey, “Hydrogen production by biomass gasification in a fluidized-bed reactor promoted by an fe/cao catalyst,” International Journal of Hydrogen Energy, vol. 37, pp. 6511 6518, 2012.
[9] E. G. Pereira, J. N. da Silva, J. L. de Oliveira, and C. S. Machado, “Sustainable energy: a review of gasification technologies,” Renewable and Sustainable Energy Reviews, vol. 16, pp. 4753–4762, 2012.
[10] K. M. Benjamin and P. E. Savage, “Hydrothermal reactions of methylamine,”The Journal of supercritical fluids, vol. 31, pp. 301–311, 2004.
[11] K. M. Benjamin and P. E. Savage, “Detailed chemical kinetic modeling of methylamine in supercritical water,” Industrial & engineering chemistry research, vol. 44, pp. 9785–9793, 2005.[12] K. C. Park and H. Tomiyasu, “Gasification reaction of organic compounds catalyzed by ruo 2 in supercritical water,” Chemical communications, pp. 694–695, 2003.
[13] A. Kruse, A. Krupka, V. Schwarzkopf, C. Gamard, and T. Henningsen, “Influence of proteins on the hydrothermal gasification and liquefaction of biomass. 1. comparison of different feedstocks,” Industrial & Engineering Chemistry Research, vol. 44, pp. 3013–3020, 2005.
[14] P. Kritzer and E. Dinjus, “An assessment of supercritical water oxidation (scwo): existing problems, possible solutions and new reactor concepts,” Chemical Engineering Journal, vol. 83, pp. 207–214, 2001.
[15] P. E. Savage, “Heterogeneous catalysis in supercritical water,” Chemical Engineering Journal, vol. 62, pp. 167–173, 2000.
[16] P. E. Savage, “A perspective on catalysis in sub-and supercritical water,” The Journal of Supercritical Fluids, vol. 47, pp. 407–414, 2009. S.
[17] A. LoppinetSerani, C. Aymonier, and F. Cansell, “Current and foreseeable applications of supercritical water for energy and the environment,” ChemSus-Chem, vol. 1, pp. 486–503, 2008.
[18] M. S. Tushar, A. Dutta, and C. C. Xu, “Simulation and kinetic modeling of supercritical water gasification of biomass,” International Journal of Hydrogen Energy, vol. 40, pp. 4481 4493, 2015.
[19] P. Azadi and R. Farnood, “Review of heterogeneous catalysts for sub-and supercritical water gasification of biomass and wastes,” International Journal of Hydrogen Energy, vol. 36, pp. 9529–9541, 2011.
[20] G. F. Froment, K. B. Bischoff, and J. De Wilde, Chemical reactor analysis and design vol. 2. New York: Wiley, 2011.
[21] J. Santamaría, J. Herguido, M. Menédez, and A. Monón, Ingeniería de reactores. Spain: Editorial S´ıntesis, 1999.
[22] W. De Jong and J. R. Van Ommen, Biomass as a Sustainable Energy Source for the Future: Fundamentals of Conversion Processes. New Jersey: John Wiley & Sons, 2014.
[23] A. Pandey, T. Bhaskar, M. Stcker, and R. K. Sukumaran, Biomass as a Sustainable Energy Source for the Future: Fundamentals of Conversion Processes. Boston: Elseiver, 2015.
[24] R. Hashaikeh, I. Butler, and J. Kozinski, “Selective promotion of catalytic reactions during biomass gasification to hydrogen,” Energy & fuels, vol. 20, pp. 2743–2747, 2006.
[25] L. Zhang, P. Champagne, and C. C. Xu, “Screening of supported transition metal catalysts for hydrogen production from glucose via catalytic supercritical water gasification,” International journal of hydrogen energy, vol. 36, pp. 9591 9601, 2011.
[26] R. J. Kee, M. E. Coltrin, and P. Glarborg, Chemically reacting flow: theory and practice. New Jersey: John Wiley & Sons, 2005.
[27] D. Rosner, Transport Processes in Chemically Reacting Flow Systems, ser. Dover Civil and Mechanical Engineering. Dover Publications, 2012.
[28] C. Pozrikidis, Numerical computation in science and engineering vol. 6. New York: Oxford university press, 1998. [29] M. Sasaki, K. Goto, K. Tajima, T. Adschiri, and K. Arai, “Rapid and selective retro-aldol condensation of glucose to glycolaldehyde in supercritical water,”Green Chemistry, vol. 4, pp. 285–287, 2002.
[30] Y. Lu, L. Guo, C. Ji, X. Zhang, X. Hao, and Q. Yan, “Hydrogen production by biomass gasification in supercritical water: a parametric study,” International Journal of Hydrogen Energy, vol. 31, pp. 822–831, 2006.