Las explosiones de rayos gamma un campo abierto para la astrofísica
Resumen
Las explosiones de rayos gamma (GRBs), son los fenómenos astrofísicos más energéticos y luminosos desde el Big Bang, y pueden liberar más energía en pocos segundos de lo que nuestro Sol emitirá en todo su vida esperada de diez mil millones de años. Su frecuencia de detección es de alrededor de una explosión por día, aunque debido a que no todas las explosiones se dirigen hacia la tierra, se estima que la tasa real es de alrededor de una cada minuto en el universo. Los GRBs juegan actualmente un rol muy importante en el área de estudio de la astrofísica de altas energías, ya que encierran toda una física nueva por el hecho de explorar nuevos procesos físicos y mecanismos de radiación que expliquen la liberación de tan grandes energías, además de la exploración de sus galaxias anfitrionas y objetos astrofísicos que puedan ser catalogados como sus posibles progenitores. A esto se suma su utilidad para el estudio de las primeras fases del universo, ya que podrían estar asociados a las primeras generaciones de estrellas y las últimas fases de desarrollo de las mismas. Este artículo busca brindarle al lector un amplio espectro sobre el entendimiento hasta ahora alcanzado en el estudio de los GRBs y los problemas físicos aún abiertos que son estudiados por los astrofísicos hoy en día.
Descargas
Citas
[2] J. S Bloom, What are gamma-ray burst?. Pinceton University Press, 2011.
[3] G. Vedrenne. y J.L. Atteia. Gamma-Ray Bursts: The Brightests explosions in the Universe. Springer, 2009
[4] Goddard Space Flight Center. The Burst And Transient Source Experiment. Fecha de Consulta: 9 de Agosto de 2016, Disponible en: http://cossc.gsfc.nasa.gov/batse/.
[5] C. A. Meegan et al. «Spatial distribution of gamma-ray bursts observed by BATSE». Nsat, 355:143–145, January 1992.
[6] C. Kouveliotou et al. «Identification of two classes of gamma-ray bursts». ApJl, 413:L101– L104, August 1993.
[7] BeppoSAX Mission Home Page. BeppoSAX Science Data Center. Fecha de Consulta: 31 de Agosto de 2016, Disponible en http://www.asdc.asi.it/bepposax/latestnews.html.
[8] E. Costa et al. «Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997». Nat, 387:783–785, June 1997.
[9] T. J. Galama et al. «An unusual supernova in the error box of the γ-ray burst of 25 April 1998». Nat, 395:670–672, October 1998.
[10] Goddard Space Flight Center. The HETE-2 Satellite. Actualizada 01 abril de 2004, Fecha de Consulta: 31 de Agosto de 2016, Disponible en http://heasarc.gsfc.nasa.gov/docs/hete2/hete2.html.
[11] Goddard Space Flight Center. The Swift Gamma-Ray Burst Mission. Fecha de Consulta: 31 de Agosto de 2016, Disponible en:http://swift.gsfc.nasa.gov/docs/swift/swiftsc.html.
[12] N. Gehrels et al.«The Swift Gamma-Ray Burst Mission», ApJ, vol. 611, pp.1005–1020, August 2004.
[13] N. Gehrels et al. «A short γ-ray burst apparently associated with an elliptical galaxy at redshift z = 0.225. Nat, 437:851–854, October 2005.
[14] B. Zhang. « Gamma-Ray Bursts in the Swift Era». Cjaa, vol 7, pp. 1–50, February 2007.
[15] Goddard Space Flight Center. Fermi Gamma-Ray Telescope. Fecha de Consulta: 31 de Agosto de 2016, Disponible en:http://fermi.gsfc.nasa.gov/
[16] T. Piran. «The physics of gamma-ray bursts», Reviews of Modern Physics, vol. 76, Issue 4, pp. 1143-1210, October 2004.
[17] T.M. Koshut, et al.. « T90 as a measurement of the duration of GRBs. Bulletin of the American Astronomical Society », Bulletin of the American Astronomical Society, vol. 2, pp. 886, May 1995.
[18] B. Zhang, et al. «GRB Observational Properties», Space Science Reviews, vol. 202, pp. 3-32, December 2016.
[19] A. Baquero. «Recientes avances en la clasificación de explosiones de rayos gamma cortas en astrofísica», Revista Maskana, vol. 7 No. 2, pp. 139-146, December 2016.
[20] B. Zhang, «Gamma-Ray Burst Prompt Emission», International Journal of Modern Physics D, vol. 23, pp.1430002, December, 2014.
[21] D. Band, et al. «BATSE observations of gamma-ray burst spectra. I - Spectral diversity», ApJ, vol. 413, pp. 281-292, August 1993.
[22] A. Baquero, ¨Clasificación de ráfagas de rayos gamma largas usando lag espectral y acf con correciones cosmológicas¨, Tesis de Maestría, Dep. Física, Escuela Politécnica Nacional, Quito, 2014.
[23] R. D. Preece, et al. «The BATSE Gamma-Ray Burst Spectral Catalog. I. High Time Resolution Spectroscopy of Bright Bursts Using High Energy Resolution Data», ApJs, vol.126, pp. 19-36, January 2000.
[24] B. Zhang et al. «A Comprehensive Analysis of Fermi Gamma-ray Burst Data. I. Spectral Components and the Possible Physical Origins of LAT/GBM GRBs», ApJ, vol.730, pp. 141, April 2011.
[25] L. Nava et al. «Spectral properties of 438 GRBs detected by Fermi/GBM», Aap, vol.530, pp. A21, ju5e 2011.
[26] D. Gruber, et al. «The Fermi GBM Gamma-Ray Burst Spectral Catalog: Four Years of Data», ApJs, vol.211, pp. 12, March 2014.
[27] B. Zhang, «Open questions in GRB physics», Comptes Rendus Physique, vol. 12, pp. 206-225, April 2011.
[28] B. Paczynski, «Gamma-ray bursters at cosmological distances», ApJl, vol. 308, pp. L43-L46, Spetember 1986.
[29] J. Goodman, «Are gamma-ray bursts optically thick?», ApJl, vol. 308, pp. L47-L50, September 1986.
[30] A. Shemi y T. Piran, «The appereance of cosmic fireballs», ApJl, vol. 365, pp. L55-L58, December, 1990.
[31] P. Mèszàros y M.J. Rees, «Steep Slopes and Preferred Breaks in Gamma-Ray Bursts Spectra: The Role of Photospheres and Comptonization», ApJ, vol. 530, pp. 292-298, February, 2000.
[32] M.J. Rees y P. Mèszàros , «Unsteady outflow models for cosmological gamma-ray bursts», ApJl, vol. 430, pp. L93-L96, August, 1994.
[33] M.J. Rees y P. Mèszàros , «Relativistic fireballs - Energy conversion and time-scales», MNRAS, vol. 258, pp. 41P-43P, September, 1992.
[34] M. Lyutikov y R. Blandford , «Electromagnetic explosions in Gamma-Ray Bursts», AAS/ High Astrophysics Division, vol. 35, pp. 622, March, 2003.
[35] D. Giannios , «Prompt GRB emission from gradual energy dissipation», Aap, vol. 480, pp. 305-312, March, 2008.
[36] J. C. McKinney y D. A. Uzdensky «A reconnection switch to trigger gamma-ray burst jet dissipation», MNRAS, vol. 419, pp. 573-607, January, 2012.
[37] B. Zhang, et al. « Physical Processes Shaping Gamma-Ray Burst X-Ray Afterglow Light Curves: Theoretical Implications from the Swift X-Ray Telescope Observations», ApJ, vol. 642, pp. 354-370, May, 2006.
[38] M.J. Rees y P. Mèszàros. « Dissipative Photosphere Models of Gamma-Ray Bursts and X-Ray Flashes», ApJ, vol. 628, pp. 847-852, August, 2005.
[39] K. Murase et al. « The Role of Stochastic Acceleration in the Prompt Emission of Gamma-Ray Bursts: Application to Hadronic Injection», ApJ, vol. 746, pp. 164, February, 2012.
[40] M.J. Rees y P. Mèszàros. «Unsteady outflow models for cosmological gamma-ray bursts», ApJl, vol. 430, pp. L93-L96, August, 1994.
[41] F. Daigne «Reconciling observed gamma-ray burst prompt spectra with synchrotron radiation?»,Aap, vol. 526, pp.A110, February, 2011.
[42] B. Zhang y H. Yan. «The Internal-collision-induced Magnetic Reconnection and Turbulence (ICMART) Model of Gamma-ray Bursts», ApJ, vol. 726, pp. 90, January, 2011.
[43] B. J. Morsony, et al. «The Origin and Propagation of Variability in the Outflows of Long-duration Gamma-ray Bursts», ApJ, vol. 723, pp. 267-276, November, 2010.
[44] F. Hascoet, et al. «Accounting for the XRT early steep decay in models of the prompt gamma-ray burst emission», Aap, vol. 542, pp. L29, June, 2012.
[45] B. Zhang y B. Zhang. «Gamma-Ray Burst Prompt Emission Light Curves and Power Density Spectra in the ICMART Model», ApJ, vol. 782, pp. 92, February, 2014.
[46] P. Mèszàros y M.J. Rees, «Optical and Long-Wavelength Afterglow from Gamma-Ray Bursts», ApJ, vol. 476, pp. 232-237, February, 1997.
[47] J. A. Nousek, et al. «Evidence for a Canonical Gamma-Ray Burst Afterglow Light Curve in the Swift XRT Data», ApJ, vol. 642, pp. 389-400, May, 2006.
[48] P. T. O’ Brien et al. «The Early X-Ray Emission from GRBs», ApJ, vol. 647, pp. 1213-1237, August, 2006.
[49] R. Willingale,et al. «{Testing the Standard Fireball Model of Gamma-Ray Bursts Using Late X-Ray Afterglows Measured by Swift», ApJ, vol. 662, pp. 1093-1110, June, 2007.
[50] H. Gao, et al, « A complete reference of the analytical synchrotron external shock models of gamma-ray bursts», Nar, vol. 57, pp. 141-190, December 2013.
[51] P. Mèszàros y M.J. Rees, «Relativistic fireballs and their impact on external matter - Models for cosmological gamma-ray bursts», ApJ, vol. 405, pp. 278-284, March, 1993.
[52] R. Sari y T. Piran, «Hydrodynamic Timescales and Temporal Structure of Gamma-Ray Bursts», ApJl, vol. 455, pp.L143, December, 1995.
[53] B. Zhang, et al. «Curvature Effect of a Non-Power-Law Spectrum and Spectral Evolution of GRB X-Ray Tails», ApJ, vol. 690, pp. L10-L13, January, 2009.
[54] P. Kumar y R. Barniol Duran. « On the generation of high-energy photons detected by the Fermi Satellite from gamma-ray bursts », MNRAS, vol. 400, pp. L75-L79, November, 2009.
[55] P. Kumar y R. Barniol Duran. «External forward shock origin of high-energy emission for three gamma-ray bursts detected by Fermi», MNRAS, vol. 409, pp.226-236, November, 2010.
[56] A. Maxham, et al. «Is GeV emission from Gamma-Ray Bursts of external shock origin? », MNRAS, vol. 415, pp. 77-82, July, 2011.
[57] M. Ackerman, et al. « Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A », Science, vol. 343, pp. 42-47, January 2014.
[58] T. Sakamoto, et al. «The Second Swift Burst Alert Telescope Gamma-Ray Burst Catalog», ApJs, vol. 195, pp. 2, July 2011.
[59] W. S. Paciesas, et al. «The Fermi GBM Gamma-Ray Burst Catalog: The First Two Years», ApJs, vol. 1999, pp. 18, March 2012.
[60] A Lien, et al. «The Third Swift Burst Alert Telescope Gamma-Ray Burst Catalog», ApJ, vol. 829, pp. 7, September 2016.
[61] G. J. Fishman y C. A. Meegan. «Gamma-Ray Bursts», Araa, vol. 33, pp. 415-458, 1995.
[62] Y. Qin, et al. «A Comprehensive Analysis of Fermi Gamma-Ray Burst Data. III. Energy-dependent T $_{90}$ Distributions of GBM GRBs and Instrumental Selection Effect on Duration Classification», ApJ, vol. 763, pp. 15, January 2013.
[63] J. P. Norris y J. T. Bonell. «Short Gamma-Ray Bursts with Extended Emission », ApJ, vol. 643, pp.266-275, May, 2006.
[64] J.Hakkila, et al. «How Sample Completeness Affects Gamma-Ray Burst Classification», ApJ, vol. 582, pp. 320-329, January, 2003.
[65] M. Boer, et al . «Are Ultra-long Gamma-Ray Bursts Different?», ApJ, vol. 800, pp. 16, February, 2015.
[66] H. Gao y P. Mèszàros . « Relation between the Intrinsic and Observed Central Engine Activity Time: Implications for Ultra-long GRBs », ApJ, vol. 802, pp. 90, April, 2015.
[67] N. Gehrels, et al.. «A new γ-ray burst classification scheme from GRB060614», Nature, vol. 444, pp. 1044–1046, December, 2006.
[68] J. P. U. Fynbo, et al. «No supernovae associated with two long-duration γ-ray bursts». Nature, vol 444, pp. 1047–1049, December, 2006.
[69] M. Della Valle, et al. « An enigmatic long-lasting γ-ray burst not accompanied by a bright supernova». Nature, vol 444, pp. 1047–1049, December, 2006.
[70] ] B. Zhang, et al. « Making a Short Gamma-Ray Burst from a Long One: Implications for the Nature of GRB 060614». ApJ, vol 655, pp. L25-L28. January, 2007.
[71] B. Zhang, et al. «Discerning the Physical Origins of Cosmological Gamma-ray Bursts Based on Multiple Observational Criteria: The Cases of z = 6.7 GRB 080913, z = 8.2 GRB 090423, and Some Short/Hard GRBs.». ApJ vol. 703, pp.1696–172. October. 2009.
[72] N. R. Tanvir, et al. «A γ-ray burst at a redshift of z ̃8.2». Nature, vol. 461, pp.1254–1257. October. 2009.
[73] R. Salvaterra, et al. «GRB090423 at a redshift of z ̃8.1». Nature, vol. 461, pp.1258–1260. October. 2009.
[74] J. Greiner, et al. «GRB 080913 at Redshift 6.7». ApJ, vol. 693, pp.1610–1620. March, 2009.
[75] B. Zhang, et al. « Astrophysics: A burst of new ideas ». Nature, vol. 444, pp.1010-1011. December, 2006.
[76] B. Zhang, et al. «A Comprehensive Analysis of Swift XRT Data. I. Apparent Spectral Evolution of Gamma-Ray Burst X-Ray Tails». ApJ, vol. 666, pp.1002-1011. September, 2007.
[77] Y. Li, et al. «A Comparative Study of Long and Short GRBs. I. Overlapping Properties». ApJs, vol. 227, pp.7. November, 2016.
[78] B. Zhang, et al. «Discerning the Physical Origins of Cosmological Gamma-ray Bursts Based on Multiple Observational Criteria: The Cases of z = 6.7 GRB 080913, z = 8.2 GRB 090423, and Some Short/Hard GRBs ». ApJ, vol. 703, pp.1696-1724. October, 2009.
[79] T.J. Galama, et al. «An unusual supernova in the error box of the gamma-ray burst of 25 April 1998». Nature, vol. 395, pp.670-672. October, 1998.
[80] J. Hjorth, et al. «A very energetic supernova associated with the gamma-ray burst of 29 March 2003 ». Nature, vol. 423, pp.847-850. June, 2003.
[81] K. Z. Stanek , et al. «Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329 ». ApJl, vol. 591, pp. L17-L20. July, 2003.
[82] S. Campana, et al. «The association of GRB 060218 with a supernova and the evolution of the shock wave ». Nature, vol. 442, pp. 1008-1010. August, 2006.
[83] E. Pian, et al. «An optical supernova associated with the X-ray flash XRF 060218». Nature, vol. 442, pp. 1011-1013. August, 2006.
[84] R. L. C. Starling, et al. « Discovery of the nearby long, soft GRB 100316D with an associated supernova ». MNRAS, vol. 411, pp. 2792-2803. March, 2011.
[85] A. S. Fruchter, et al. « Long γ-ray bursts and core-collapse supernovae have different environments». Nature, vol. 411, pp. 463-468. May, 2006.
[86] S. Savaglio, et al. « The Galaxy Population Hosting Gamma-Ray Bursts.». ApJ, vol. 691, pp. 182-211. January, 2009.
[87] S. E. Woosley, et al. «The Progenitor Stars of Gamma-Ray Bursts.». ApJ, vol. 637, pp. 182-211. February, 2006.
[88] S. -C. Yoon y N. Langer. «Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts.». Aap, vol. 443, pp. 643-648. November, 2005.
[89] A. M. Soderberg, et al. «Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions». Nature, vol. 442, pp. 1014-1017. August, 2006.
[90] E. Liang, et al. «Low-Luminosity Gamma-Ray Bursts as a Unique Population: Luminosity Function, Local Rate, and Beaming Factor». ApJ, vol. 662, pp. 1111-1018. June, 2007.
[91] S. T. Holland, et al. « GRB 090417B and its Host Galaxy: A Step Toward an Understanding of Optically Dark Gamma-ray Bursts». ApJ, vol.717, pp. 223-234. July, 2010.
[92] C. Wolf y P. Podsiadlowski. «The metallicity dependence of the long-duration gamma-ray burst rate from host galaxy luminosities.». MNRAS, vol.375, pp. 1049-1058. July, 2010.
[93] L. –X. Li. « Star formation history up to z = 7.4: implications for gamma-ray bursts and cosmic metallicity evolution». MNRAS, vol.388, pp. 1487-1500. August, 2008.
[94] Y. Niino, et al. « Luminosity Distribution of Gamma-Ray Burst Host Galaxies at redshift z = 1 in Cosmological Smoothed Particle Hydrodinamic Simulations: Implications for the Metallicity Dependence of GRBs». ApJ, vol.726, pp. 88. January, 2011.
[95] D. Eichler, et al «Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars ». Nature, vol.340, pp. 126-128. July, 1989.
[96] R. Narayan, et al. « Gamma-ray bursts as the death throes of massive binary stars ». ApJ, vol.395, pp. L83-L86. August, 1992.
[97] R. Narayan, et al. « Cosmological gamma-ray bursts ». Acta Astronomica, vol. 41, pp. 257-267. 1991.
[98] J. H. Taylor y J. M. Weisberg. « Further experimental tests of relativistic gravity using the binary pulsar PSR 1913 + 16». ApJ, vol. 345, pp. 434–450, October 1989.
[99] M. Kramer y I. H. Stairs. «The Double Pulsar» ARAA, vol. 46, pp. 541–572, September, 2008.
[100] E. Nakar. «Short-hard gamma-ray bursts». Physics Reports, vol. 442,pp.166–236, April, 2007.
[101] W. H. Lee y E. Ramirez-Ruiz. «The progenitors of short gamma-ray bursts». New Journal of Physics, vol. 9, pp.17, January, 2007.
[102] E. Berger, et al. «A New Population of High-Redshift Short-Duration Gamma-Ray Bursts». ApJ, vol. 664, pp. 1000–1010, August, 2007.
[103] A. de Ugarte Postigo, et al. «GRB 060121: Implications of a Short-/Intermediate-Duration γ-Ray Burst at High Redshift». ApJ, vol. 648, pp. L83–L87, September, 2006.
[104] Melott, et al. « Did a gamma-ray burst initiate the late Ordovician mass extinction?». International Journal of Astrobiology, vol. 3, pp. 55-61, January, 2004.