Polifenoles: propiedades antioxidantes y toxicológicas

Autores/as

  • Eréndira Valencia-Avilés Universidad Michoacana de San Nicolás de Hidalgo
  • Iván Ignacio-Figueroa Universidad Michoacana de San Nicolás de Hidalgo
  • Erika Sosa-Martínez Universidad Michoacana de San Nicolás de Hidalgo
  • María Carmen Bartolomé-Camacho Universidad Michoacana de San Nicolás de Hidalgo
  • Hector Eduardo Martínez-Flores
  • Martha-Estrella García-Pérez

Resumen

Los compuestos fenólicos son metabolitos secundarios de las plantas, con diversas funciones fisiológicas. Variadas estructuras químicas caracterizan a este grupo de moléculas. Su amplia distribución, así como su capacidad de captar especies reactivas de oxígeno y nitrógeno asociadas con el padecimiento de enfermedades, perfila a los extractos naturales ricos en compuestos fenólicos como ingredientes que pueden ser utilizados para el desarrollo de nuevos productos en la industria farmacéutica, de alimentos y cosméticos. Sin embargo, para lograr tales propósitos, es necesario asegurar su inocuidad, a través de la realización de pruebas rigurosas de toxicidad. En este artículo se describen los diferentes tipos de compuestos fenólicos desde el punto de vista químico, así como múltiples estudios que avalan sus propiedades antioxidantes. De igual modo, se discuten diferentes métodos toxicológicos y su impacto en la determinación del grado de toxicidad de extractos polifenólicos naturales provenientes de plantas.

Phenolic compounds are secondary plant metabolites, with various physiological functions. Several chemical structures characterize to these molecules. They are widely distributed and have a high capacity to capture reactive oxygen and nitrogen species associated to the disease pathogenesis. Taking into account these charcacteristics, natural extracts rich in polyphenols can be used for the development of new pharmaceutical, alimentary and cosmetic products. However, it is necessary to ensure the safety of these products by performing toxicity tests. This article describes polyphenols from the chemical point of view, as well as multiple studies that support their antioxidant properties. Additionally, different toxicological methods are discussed, as well as their impact in the determination of the toxicity of natural polyphenolic

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Eréndira Valencia-Avilés, Universidad Michoacana de San Nicolás de Hidalgo

Facultad de Químico-Farmacobiología. Universidad Michoacana de San Nicolás de Hidalgo.Tzinzuntzan 173. Col Matamoros. Morelia, Michoacán, México

Citas

[1] A. Munin and F. Edwards-Lévy, Encapsulation of natural polyphenolic compounds; a review., vol. 3, no. 4. 2011.
[2] M. Quiñones, M. Miguel, and A. Aleixandre, “Los polifenoles, compuestos de origen natural con efectos saludables sobre el sistema cardiovascular,” Nutr. Hosp., vol. 27, no. 1, pp. 76–89, 2012.
[3] C. W. I. Haminiuk, G. M. Maciel, M. S. V Plata-Oviedo, and R. M. Peralta, “Phenolic compounds in fruits - an overview,” Int. J. Food Sci. Technol., vol. 47, no. 10, pp. 2023–2044, 2012.
[4] J. Shay, H. A. Elbaz, I. Lee, S. P. Zielske, M. H. Malek, and M. Hüttemann, “Molecular Mechanisms and Therapeutic Effects of ( − ) -Epicatechin and Other Polyphenols in Cancer , Inflammation , Diabetes , and Neurodegeneration,” vol. 2015, 2015.
[5] D. Procházková, I. Boušová, and N. Wilhelmová, “Antioxidant and prooxidant properties of flavonoids,” Fitoterapia, vol. 82, no. 4, pp. 513–523, 2011.
[6] C. Manach, A. Scalbert, C. Morand, C. Rémésy, and L. Jiménez, “Polyphenols: Food sources and bioavailability,” Am. J. Clin. Nutr., vol. 79, no. 5, pp. 727–747, 2004.
[7] P. Sunkireddy, S. N. Jha, J. R. Kanwar, and S. C. Yadav, “Natural antioxidant biomolecules promises future nanomedicine based therapy for cataract.,” Colloids Surf. B. Biointerfaces, vol. 112, pp. 554–62, Dec. 2013.
[8] A. L. Gomez, J. A. Lopez, A. Rodriguez, J. Fortiz, L. R. Martinez, A. Apolinar, and L. F. Enriquez, “Produccion de compuestos fenolicos por cuatro especies de microalgas marinas sometidas a diferentes condiciones de iluminacion,” Lat. Am. J. Aquat. Res., vol. 44, no. 1, pp. 137–143, 2016.
[9] P. Baret, A. Septembre-Malaterre, M. Rigoulet, C. Lefebvre D’Hellencourt, M. Priault, M. P. Gonthier, and A. Devin, “Dietary polyphenols preconditioning protects 3T3-L1 preadipocytes from mitochondrial alterations induced by oxidative stress,” Int. J. Biochem. Cell Biol., vol. 45, no. 1, pp. 167–174, 2013.
[10] J. Rodrigo-GarcÍa, L. A. De la Rosa, B. Herrera-Duenez, A. G. González-Barrios, G. A. González-Aguilar, S. Ruiz-Cruz, and E. Alvarez-Parrilla, “Cuantificacion de polifenoles y capacidad antioxidante en duraznos comercializados en Cuantificación de polifenoles y capacidad antioxidante en duraznos comercializados en Ciudad Juárez , México Polyphenol and antioxidant capacity quantification in,” Tecnociencia, vol. V, no. May 2011, pp. 67–75, 2016.
[11] Y. E. Lopera, J. Fantinelli, L. F. González-Arbeláez, B. Rojano, J. L. Ríos, G. Schinella, and M. Susana, “Antioxidant activity and cardioprotective effect of a nonalcoholic extract of Vaccinium meridionale Swartz during ischemia-reperfusion in rats,” Evidence-based Complement. Altern. Med., vol. 2013, pp. 1–10, 2013.
[12] E. Szliszka and W. Krol, “Polyphenols isolated from propolis augment TRAIL-induced apoptosis in cancer cells,” Evidence-based Complement. Altern. Med., vol. 2013, 2013.
[13] M. R. Moreno-Jimenez, F. Trujillo-Esquivel, M. a. Gallegos-Corona, R. Reynoso-Camacho, R. F. González-Laredo, J. A. Gallegos-Infante, N. E. Rocha-Guzmán, and M. Ramos-Gomez, “Antioxidant, anti-inflammatory and anticarcinogenic activities of edible red oak (Quercus spp.) infusions in rat colon carcinogenesis induced by 1,2-dimethylhydrazine,” Food Chem. Toxicol., vol. 80, pp. 144–153, 2015.
[14] F. a Van Dorsten, S. Peters, G. Gross, V. G. Roldan, M. Klinkenberg, R. C. H. De Vos, E. Vaughan, J. P. M. Van, S. Possemiers, T. Van De Wiele, and D. M. Jacobs, “Gut Microbial Metabolism of Polyphenols from Black Tea and Red Wine / Grape Juice Is Source-Specific and Colon-Region Dependent Gut Microbial Metabolism of Polyphenols from Black Tea and Red Wine / Grape Juice Is Source-Specific and Colon-Region Dependent,” J. Agric. Food Chem., vol. 60, no. 45, pp. 11331–11342, 2012.
[15] K. Zapata, F. B. Cortes, and B. A. Rojano, “Polifenoles y Actividad Antioxidante del Fruto de Guayaba Agria (Psidium araca),” Inf. Tecnol., vol. 24, no. 5, pp. 103–112, 2013.
[16] I. A. M. Groh, C. Chen, C. Lüske, A. T. Cartus, and M. Esselen, “Plant polyphenols and oxidative metabolites of the herbal alkenylbenzene methyleugenol suppress histone deacetylase activity in human colon carcinoma cells,” J. Nutr. Metab., vol. 2013, 2013.
[17] K. Hintze, E. H. Jeffery, J. W. Finley, A. Kong, K. J. Hintze, E. H. Je, L. L. Ji, and X. G. Lei, “Antioxidants in Foods : State of the Science Important to the Food Industry Antioxidants in Foods : State of the Science Important to the Food Industry,” no. November 2015, pp. 6837–6846, 2011.
[18] I. Palacios, M. Lozano, C. Moro, M. D’Arrigo, M. A. Rostagno, J. A. Martínez, A. García-Lafuente, E. Guillamón, and A. Villares, “Antioxidant properties of phenolic compounds occurring in edible mushrooms,” Food Chem., vol. 128, no. 3, pp. 674–678, 2011.
[19] N. Balasundram, K. Sundram, and S. Samman, “Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses,” Food Chem., vol. 99, no. 1, pp. 191–203, 2006.
[20] D. Del Rio, A. Rodriguez-Mateos, J. P. E. Spencer, M. Tognolini, G. Borges, and A. Crozier, “Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases.,” Antioxid. Redox Signal., vol. 18, no. 14, pp. 1818–1892, 2013.
[21] B. Zhang, J. Cai, C.-Q. Duan, M. Reeves, and F. He, “A Review of Polyphenolics in Oak Woods,” Int. J. Mol. Sci., vol. 16, no. 4, pp. 6978–7014, 2015.
[22] J. Gonçalves, C. L. Silva, P. C. Castilho, and J. S. Câmara, “An attractive, sensitive and high-throughput strategy based on microextraction by packed sorbent followed by UHPLC-PDA analysis for quantification of hydroxybenzoic and hydroxycinnamic acids in wines,” Microchem. J., vol. 106, pp. 129–138, 2013.
[23] C. G. da Rosa, C. D. Borges, R. C. Zambiazi, J. K. Rutz, S. R. da Luz, F. D. Krumreich, E. V. Benvenutti, and M. R. Nunes, “Encapsulation of the phenolic compounds of the blackberry (Rubus fruticosus),” LWT - Food Sci. Technol., vol. 58, no. 2, pp. 527–533, Oct. 2014.
[24] I. C. W. Arts and P. C. H. Hollman, “Polyphenols and disease risk in epidemiologic studies,” Am. J. Clin. Nutr., vol. 81, p. 317S–25S, 2005.
[25] W. Routray and V. Orsat, “Microwave-Assisted Extraction of Flavonoids: A Review,” Food Bioprocess Technol., vol. 5, no. 2, pp. 409–424, 2012.
[26] V. I. P. I. Ignat , I. Volf, “A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables,” Int. J. ChemTech Res., vol. 3, no. 3, pp. 1033–1036, 2011.
[27] E. de Rijke, P. Out, W. M. a Niessen, F. Ariese, C. Gooijer, and U. a T. Brinkman, “Analytical separation and detection methods for flavonoids.,” J. Chromatogr. A, vol. 1112, no. 1–2, pp. 31–63, Apr. 2006.
[28] A. Crozier, D. Del Rio, and M. N. Clifford, “Bioavailability of dietary flavonoids and phenolic compounds,” Mol. Aspects Med., vol. 31, no. 6, pp. 446–467, 2010.
[29] D. Prakash, G. Upadhyay, P. Pushpangadan, and C. Gupta, “Antioxidant and free radical scavenging activities of some fruits.,” J. Complement. Integr. Med., vol. 8, no. January, pp. 1109–1116, 2011.
[30] J. M. Dimitric Markovic, B. Pejin, D. Milenkovic, D. Amic, N. Begovic, M. Mojovic, and Z. S. Markovic, “Antiradical activity of delphinidin, pelargonidin and malvin towards hydroxyl and nitric oxide radicals: The energy requirements calculations as a prediction of the possible antiradical mechanisms,” Food Chem., vol. 218, pp. 440–446, 2017.
[31] I. D. Silva, J. Gaspar, G. Gomes, A. S. Rodrigues, A. Laires, and J. Rueff, “Chemical features of flavonols affecting their genotoxicity . Potential implications in their use as therapeutical agents,” vol. 124, pp. 29–51, 2000.
[32] H.-H. Goh, K. Khairudin, N. a Sukiran, M. N. Normah, and S. N. Baharum, “Metabolite profiling reveals temperature effects on the VOCs and flavonoids of different plant populations.,” Plant Biol. (Stuttg)., vol. 18, pp. 1–10, 2015.
[33] F. Chinnici, N. Natali, A. Bellachioma, A. Versari, and C. Riponi, “Changes in phenolic composition of red wines aged in cherry wood,” LWT - Food Sci. Technol., vol. 60, no. 2, pp. 977–984, 2015.
[34] S. Philipov and T. Doncheva, “Alkaloids Derived from Ornithine: Tropane Alkaloids,” Nat. Prod., no. January 2013, pp. 343–358, 2013.
[35] C. H. Iii and N. Dakota, “Sources of natural antioxidants : oilseeds , nuts , cereals , legumes , animal products and microbial sources,” North, pp. 159–209, 2001.
[36] T. Stevanovic, P. N. Diouf, and M. Garcia-Perez, “Bioactive Polyphenols from Healthy Diets and Forest Biomass,” Curr. Nutr. Food Sci., vol. 5, no. 4, pp. 264–295, Nov. 2009.
[37] P. Liu, Composition of hawthorn (Crataegus spp.) fruits and leaves and emblic leafflower (Phyllanthus emblica) fruits. 2012.
[38] P. Arapitsas, “Hydrolyzable tannin analysis in food.,” Food Chem., vol. 135, no. 3, pp. 1708–17, Dec. 2012.
[39] M. Atanacković, A. Petrović, S. Jović, L. G.- Bukarica, M. Bursać, and J. Cvejić, “Influence of winemaking techniques on the resveratrol content, total phenolic content and antioxidant potential of red wines,” Food Chem., vol. 131, no. 2, pp. 513–518, 2012.
[40] P. Gresele, C. Cerletti, G. Guglielmini, P. Pignatelli, G. de Gaetano, and F. Violi, “Effects of resveratrol and other wine polyphenols on vascular function: An update,” J. Nutr. Biochem., vol. 22, no. 3, pp. 201–211, 2011.
[41] L. Vincenzo, “Phenolic Compunds: Introduction,” in Natural Products, no. Julio, K. G. Ramawat and J. M. Mérillon, Eds. 2013, pp. 1543–1580.
[42] C. D. Stalikas, “Extraction, separation, and detection methods for phenolic acids and flavonoids,” J. Sep. Sci., vol. 30, no. 18, pp. 3268–3295, 2007.
[43] E. T. Benković, T. Grohar, D. Žigon, U. Švajger, D. Janeš, S. Kreft, and B. Štrukelj, “Chemical composition of the silver fir (Abies alba) bark extract Abigenol® and its antioxidant activity,” Ind. Crops Prod., vol. 52, pp. 23–28, 2014.
[44] T. M. T. Avelar, A. S. Storch, L. A. Castro, G. V. M. M. Azevedo, L. Ferraz, and P. F. Lopes, “Oxidative stress in the pathophysiology of metabolic syndrome : which mechanisms are involved ?,” no. August, pp. 231–239, 2015.
[45] C. López-Alarcón and A. Denicola, “Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays,” Anal. Chim. Acta, vol. 763, pp. 1–10, 2013.
[46] L. C. Corrales and M. M. Muñoz-Ariza, “Estrés oxidativo : origen , evolución y consecuencias de la toxicidad del oxígeno,” Nov. - Publicación Científica en Ciencias Biomédicas, vol. 10, no. 18, pp. 213–225, 2012.
[47] N. Auberval, S. Dal, W. Bietiger, E. Seyfritz, J. Peluso, C. Muller, M. Zhao, E. Marchioni, M. Pinget, N. Jeandidier, E. Maillard, V. Schini-Kerth, and S. Sigrist, “Oxidative Stress Type Influences the Properties of Antioxidants Containing Polyphenols in RINm5F Beta Cells.,” Evid. Based. Complement. Alternat. Med., vol. 2015, pp. 1–11, 2015.
[48] A. Septembre-Malaterre, G. Stanislas, E. Douraguia, and M.-P. Gonthier, “Evaluation of nutritional and antioxidant properties of the tropical fruits banana, litchi, mango, papaya, passion fruit and pineapple cultivated in Réunion French Island,” Food Chem., vol. 212, pp. 225–233, 2016.
[49] D. Pradal, P. Vauchel, S. Decossin, P. Dhulster, and K. Dimitrov, “Kinetics of ultrasound-assisted extraction of antioxidant polyphenols from food by-products: Extraction and energy consumption optimization,” Ultrason. Sonochem., vol. 32, pp. 137–146, 2016.
[50] C. Angeloni, T. Maraldi, D. Milenkovic, and D. Vauzour, “Dietary polyphenols and their effects on cell biochemistry and pathophysiology 2014,” Oxid. Med. Cell. Longev., vol. 2015, pp. 2–4, 2015.
[51] M.-E. García-Pérez, M. Royer, A. Duque-fernandez, P. N. Diouf, T. Stevanovic, and R. Pouliot, “Antioxidant, toxicological and antiproliferative properties of Canadian polyphenolic extracts on normal and psoriatic keratinocytes,” J. Ethnopharmacol., 2010.
[52] M. Da Silva Morrone, C. E. Schnorr, G. A. Behr, J. Gasparotto, R. C. Bortolin, K. S. Moresco, L. Bittencourt, A. Zanotto-Filho, D. P. Gelain, and J. C. F. Moreira, “Oral administration of curcumin relieves behavioral alterations and oxidative stress in the frontal cortex, hippocampus, and striatum of ovariectomized Wistar rats,” J. Nutr. Biochem., vol. 32, pp. 181–188, 2016.
[53] S. Rajamanikandan, T. Sindhu, D. Durgapriya, D. Sophia, P. Ragavendran, and V. K. Gopalakrishnan, “Radical Scavenging and Antioxidant Activity of Ethanolic Extract of Mollugo nudicaulis by Invitro Assays,” Indian J. Pharm. Educ. Res., vol. 45, no. 4, pp. 310–316, 2011.
[54] S. H. Choi, J. B. Ahn, N. Kozukue, C. E. Levin, and M. Friedman, “Distribution of free amino acids, flavonoids, total phenolics, and antioxidative activities of jujube (Ziziphus jujuba) fruits and seeds harvested from plants grown in Korea,” J. Agric. Food Chem., vol. 59, no. 12, pp. 6594–6604, 2011.
[55] H. Willeman, P. Hance, A. Fertin, N. Voedts, N. Duhal, J. F. Goossens, and J. L. Hilbert, “A method for the simultaneous determination of chlorogenic acid and sesquiterpene lactone content in industrial chicory root foodstuffs,” Sci. World J., vol. 2014, pp. 1–11, 2014.
[56] a. Piazzon, U. Vrhovsek, D. Masuero, F. Mattivi, F. Mandoj, and M. Nardini, “Antioxidant activity of phenolic acids and their metabolites: Synthesis and antioxidant properties of the sulfate derivatives of ferulic and caffeic acids and of the acyl glucuronide of ferulic acid,” J. Agric. Food Chem., vol. 60, no. 50, pp. 12312–12323, 2012.
[57] F. B. Lotito SB, Zhang WJ, Yang CS, Crozier A, “Metabolic Conversion of Dietary Flavonoids Alterstheir Anti-Inflammatory and Antioxidant Properties,” Free Radic. Biol. Med., vol. 51, no. 2, pp. 454–463, 2012.
[58] M. H. H. Roby, M. A. Sarhan, K. A.-H. Selim, and K. I. Khalel, “Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts,” Ind. Crops Prod., vol. 43, pp. 827–831, May 2013.
[59] F. Abderrahim, E. Huanatico, R. Segura, S. Arribas, M. C. Gonzalez, and L. Condezo-Hoyos, “Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from Peruvian Altiplano,” Food Chem., vol. 183, pp. 83–90, 2015.
[60] I. M. C. Brighente, M. Dias, L. G. Verdi, and M. G. Pizzolatti, “Antioxidant Activity and Total Phenolic Content of Some Brazilian Species,” Pharm. Biol., vol. 45, no. 2, pp. 156–161, 2007.
[61] M. Ali and B. H. Abbasi, “Thidiazuron-induced changes in biomass parameters, total phenolic content, and antioxidant activity in callus cultures of Artemisia absinthium L.,” Appl. Biochem. Biotechnol., vol. 172, no. 5, pp. 2363–2376, 2014.
[62] M. S. Yogendra Kumar, R. J. Tirpude, D. T. Maheshwari, A. Bansal, and K. Misra, “Antioxidant and antimicrobial properties of phenolic rich fraction of Seabuckthorn (Hippophae rhamnoides L.) leaves in vitro.,” Food Chem., vol. 141, no. 4, pp. 3443–50, Dec. 2013.
[63] H. Alimi, N. Hfaiedh, Z. Bouoni, M. Sakly, and K. Ben Rhouma, “Evaluation of antioxidant and antiulcerogenic activities of Opuntia ficus indica f. inermis flowers extract in rats.,” Environ. Toxicol. Pharmacol., vol. 32, no. 3, pp. 406–16, Nov. 2011.
[64] Y. Yilmaz and R. T. Toledo, “Oxygen radical absorbance capacities of grape/wine industry byproducts and effect of solvent type on extraction of grape seed polyphenols,” J. Food Compos. Anal., vol. 19, no. 1, pp. 41–48, 2006.
[65] P. S. Sellamuthu, M. Mafune, D. Sivakumar, and P. Soundy, “Thyme oil vapour and modified atmosphere packaging reduce anthracnose incidence and maintain fruit quality in avocado.,” J. Sci. Food Agric., vol. 93, no. 12, pp. 3024–31, Sep. 2013.
[66] V. Kraujalytė, P. R. Venskutonis, A. Pukalskas, L. Česonienė, and R. Daubaras, “Antioxidant properties, phenolic composition and potentiometric sensor array evaluation of commercial and new blueberry (Vaccinium corymbosum) and bog blueberry (Vaccinium uliginosum) genotypes,” Food Chem., vol. 188, pp. 583–590, 2015.
[67] J. Oszmiański and A. Wojdyło, “Comparative study of phenolic content and antioxidant activity of strawberry puree, clear, and cloudy juices,” Eur. Food Res. Technol., vol. 228, no. 4, pp. 623–631, 2009.
[68] P. N. Diouf, T. Stevanovic, and Y. Boutin, “The effect of extraction process on polyphenol content, triterpene composition and bioactivity of yellow birch (Betula alleghaniensis Britton) extracts,” Ind. Crops Prod., vol. 30, no. 2, pp. 297–303, Sep. 2009.
[69] S. a. O. Santos, J. J. Villaverde, C. S. R. Freire, M. R. M. Domingues, C. P. Neto, and A. J. D. Silvestre, “Phenolic composition and antioxidant activity of Eucalyptus grandis, E. urograndis (E. grandis×E. urophylla) and E. maidenii bark extracts,” Ind. Crops Prod., vol. 39, pp. 120–127, Sep. 2012.
[70] J. Sanchez-Burgos, “Antioxidant, antimicrobial, antitopoisomerase and gastroprotective effect of herbal infusions from four Quercus species,” Ind. Crop. …, 2013.
[71] D. Söhretoğlu, S. Sabuncuoğlu, and U. Ş. Harput, “Evaluation of antioxidative, protective effect against H2O2 induced cytotoxicity, and cytotoxic activities of three different Quercus species.,” Food Chem. Toxicol., vol. 50, no. 2, pp. 141–6, Feb. 2012.
[72] S. A. O. Santos, P. C. R. O. Pinto, A. J. D. Silvestre, and C. P. Neto, “Chemical composition and antioxidant activity of phenolic extracts of cork from Quercus suber L.,” Ind. Crops Prod., vol. 31, no. 3, pp. 521–526, May 2010.
[73] J. A. Gallegos-Infante, N. E. Rocha-Guzmán, R. F. González-Laredo, L. Medina-Torres, C. A. Gomez-Aldapa, L. A. Ochoa-Martínez, C. E. Martínez-Sánchez, B. Hernández-Santos, and J. Rodríguez-Ramírez, “Physicochemical properties and antioxidant capacity of oak (Quercus resinosa) leaf infusions encapsulated by spray-drying,” Food Biosci., vol. 2, pp. 31–38, Jun. 2013.
[74] M. Rosales-Castro, R. F. González-Laredo, N. E. Rocha-Guzmán, J. A. Gallegos-Infante, M. J. Rivas-Arreola, and J. J. Karchesy, “Antioxidant activity of fractions from Quercus sideroxyla bark and identification of proanthocyanidins by HPLC-DAD and HPLC-MS,” Holzforschung, vol. 66, no. 5, pp. 577–584, Jan. 2012.
[75] N. E. Rocha-Guzmán, J. R. Medina-medrano, A. Gallegos-infante, M. Ramos-g, and S. M. Gonz, “Chemical Evaluation , Antioxidant Capacity , and Consumer Acceptance of Several Oak Infusions,” vol. 77, no. 2, 2012.
[76] R. Ramírez Herrera and N. E. Soto Ruíz, “Estudios Pre-clínicos y Clínicos,” Cofepris, pp. 1–20, 2013.
[77] R. Gámez and R. Más, “Aspectos generales de los estudios toxicológicos preclínicos más empleados.,” Rev. CENIC Ciencias Biol., vol. 38, no. 3, pp. 204–208, 2007.
[78] S. Parasuraman, “Toxicological screening,” J. Pharmacol. Pharmacother., vol. 2, no. 2, pp. 74–79, 2011.
[79] T. I. Ramos, “Contexto actual de los estudios preclínicos,” Dep. ciencias la vida y la Agric., vol. 1, no. 3, pp. 103–105, 2015.
[80] OECD/OCDE, “Acute Oral Toxicity – Acute Toxic Class Method,” Oecd Guidel. Test. Chem., no. December, pp. 1–14, 2001.
[81] OECD/OCDE, “Neurotoxicity Study in Rodents,” no. July, pp. 1–15, 1997.
[82] D. F. Arencibia-Arrebola, L. A. Rosario-Fernández, Y. López-Feria, M. Fariñas-Medina, J. F. Infante-Bourzac, D. Díaz-Rivero, and J. L. Prieto-Díaz, “Algunas consideraciones sobre la determinación de la toxicidad aguda,” Rev. Toxicol. en Línea, pp. 1–15, 2003.
[83] OCDE, “Preliminary Draft Updated Test Guideline 407 : Repeated Dose 28-Day Oral Toxicity Study in Rodents ; Updated With,” OCDE Guidel. Test. Chem., pp. 1–11, 2006.
[84] H. Kandárová and S. Letašiová, “Alternative methods in toxicology: pre-validated and validated methods.,” Interdiscip. Toxicol., vol. 4, no. 3, pp. 107–13, 2011.
[85] L. Bravo, “Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance.,” Nutr. Rev., vol. 56, no. 11, pp. 317–333, 1998.
[86] E. V. A. G. Creus, “Compuestos fenólicos,” vol. 23, pp. 80–84, 2004.
[87] R. V. Soto, M. Eufemia, M. Rubio, M. J. Verde Star, A. O. Cárdenas, P. Preciado-Rangel, J. A. González, and J. R. Esparza-Rivera, “Cnidoscolus chayamansa hidropónica orgánica y su capacidad hipoglucemiante, calidad nutraceutica y toxicidad* Cnidoscolus chayamansa organic hydroponic and its hypoglycemic capacity, nutraceutical quality and toxicity,” Rev. Mex. Ciencias Agrícolas Nezahualcóyotl Núm. Palacio Munic., vol. 6, no. 110, pp. 815–825, 2015.
[88] K. O. Ramos, Y. H. Sánchez, N. V. Pérez, and O. P. Villafaña, “Actividad antioxidante in vitro y toxicidad de extractos hidroalcohólicos de hojas de Citrus spp. (Rutaceae),” Rev. Cuba. Plantas Med., vol. 17, no. 4, pp. 368–379, 2012.
[89] E. A. Plazas Gonzalez, “Tamizaje fitoquímico preliminar , evaluación de la actividad antioxidante in vitro y toxicidad de seis especies de Ericaeas colombianas,” Rev. Cuba. Plantas Med., vol. 19, no. 2, pp. 182–199, 2015.
[90] E. Plazas-González, “Tamizaje fitoquímico preliminar , evaluación de la actividad antioxidante in vitro y toxicidad de seis especies de Ericaeas colombianas Preliminary phytochemical screening , antioxidant , and toxic activity evaluation of six species of colombian Ericaeas,” Rev. Cuba. Plantas Med., vol. 19, no. 2, pp. 182–199, 2015.
[91] E. M. Poma, E. R. Requis, and G. C. Gordillo, “Estudio fitoquímico y actividad antiinflamatoria de la Annona muricata L . ( Guanábana ) de Cuzco,” Cienc. Invest., vol. 14, no. 2, pp. 29–33, 2011.
[92] R. Rodríguez Amado, A. Lafourcade Prada, and L. Pérez Rondón, “Hojas de Psidium guajava L,” Rev. Cuba. Farm., vol. 47, no. 1, pp. 127–135, 2013.

Descargas

Publicado

2017-01-31