Poetic intelligence as creative resistance

Authors

  • ALICIA OLMOS Provincial University of Córdoba
  • RICARDO DAL FARRA Concordia University

Abstract

This article proposes the framework of poetic intelligence as a guide for research and practice in the arts and design with artificial intelligence (AI). We build on the ethical and existential question “music for what and for whom?”, to reorient technology toward cultural, aesthetic, and social resonance. We review the state of the art in generative music (MusicLM, Jukebox, Stable Audio), human–machine improvisation (OMax/IRCAM), and speculative explorations such as quantum music. On this basis, we outline a methodology of poetic co-design with four principles: crossmodal coherence, shared agency, creative transparency, and computational sustainability. We introduce “relational scores” as reproducible scripts of interaction, and discuss risks (opacity, copyright, environmental impact) alongside opportunities (new audiovisual rhetorics, accessibility, cultural preservation). We conclude that AI, understood as poetic intelligence, is not meant to automate art but to expand the sensitive conversation between bodies, materials, and machines.

KEYWORDS: poetic intelligence; visual music; co-design; human–machine improvisation; sustainability.

Downloads

Download data is not yet available.

References

Agre, P. E. (1997). Toward a critical technical practice: Lessons learned in trying to reform AI. UCLA. https://pages.gseis.ucla.edu/faculty/agre/critical.html

Agostinelli, A., Denk, T. I., Borsos, Z., Engel, J., Verzetti, M., Caillon, A., Huang, Q., Jansen, A., Roberts, A., Tagliasacchi, M., Sharifi, M., Zeghidour, N., & Frank, C. - Google Research (2023). MusicLM: Generating music from text. https://arxiv.org/abs/2301.11325 https://google-research.github.io/seanet/musiclm/examples/

AI Song Contest. (2020–2025). Values; Previous editions & winners. https://www.aisongcontest.com/values - https://www.aisongcontest.com/

Borsos, Z., Marinier, R., Vincent, D., Kharitonov, E., Zeghidour, N., & Tagliasacchi, M. (2023). SoundStorm: Efficient parallel audio generation. https://arxiv.org/abs/2305.09636

Borsos, Z., Marinier, R., et al. (2022). AudioLM: A language modeling approach to audio generation.. https://arxiv.org/abs/2209.03143

Caillon, A., McWilliams, B., Tarakajian, C., Simon, I., Manco, I., Engel, J., Constant, N., Denk, T. I., Verzetti, M., et al. (2025). Live Music Models. https://arxiv.org/abs/2508.04651

Caillon, A. & Esling, P. (2021). RAVE: A variational autoencoder for fast and high-quality neural audio synthesis. https://arxiv.org/pdf/2111.05011

Caspe, F., Shier, J., Sandler, M., Saitis, C., McPherson, A. (2025). Designing Neural Synthesizers for Low-Latency Interaction. https://fcaspe.github.io/brave/

Cella, C. E., Ghisi, D., Lostanlen, V., Lévy, F., Fineberg, J., & Maresz, Y. (2020). OrchideaSOL: A dataset of extended instrumental techniques for computer-aided orchestration. https://doi.org/10.48550/arXiv.2007.00763

Chen, K., Wu, Y., Liu, H., Nezhurina, M., Berg-Kirkpatrick, T., & Dubnov, S. (2023). MusicLDM: Enhancing novelty in text-to-music generation using beat-synchronous mixup strategies. https://doi.org/10.48550/arXiv.2308.01546

Chen, J., Ma, W., Liu, P., Wang, W., Song, T., Li, M., et al. (2025). MusiXQA: Advancing visual music understanding in multimodal large language models. https://doi.org/10.48550/arXiv.2506.23009

Copet, J., Kreuk, F., Gat, I., Remez, T., Kant, D., Synnaeve, G., & Adi, Y. (2023). Simple and controllable music generation. https://doi.org/10.48550/arXiv.2306.05284

Dal Farra, R. (2025, 29 de agosto). Inteligencia, poética y futuro: ¿Música para qué y para quiénes? [Ponencia, Foro académico, Festival Internacional de Música CiMa, Manizales, Colombia]. PDF proporcionado por el autor. (Figura en el programa del Festival CiMa 2025). https://www.ucaldas.edu.co/portal/el-festival-internacional-de-musica-cima-llega-a-su-decima-edicion/

Dhariwal, P., Jun, H., Payne, C., Kim, J. W., Radford, A., & Sutskever, I. (2020). Jukebox: A generative model for music. https://doi.org/10.48550/arXiv.2005.00341

Dunne, A., & Raby, F. (2013). Speculative Everything: Design, Fiction, and Social Dreaming. MIT Press.

Engel, J., Resnick, C., Roberts, A., Dieleman, S., Eck, D., Simonyan, K., & Norouzi, M. (2017). Neural audio synthesis of musical notes with WaveNet autoencoders. https://doi.org/10.48550/arXiv.1704.01279

Gardner, J., Durand, S., Stoller, D., & Bittner, R. M. (2023). LLark: A multimodal instruction-following language model for music. https://doi.org/10.48550/arXiv.2310.07160

Institut de Recherche et Coordination Acoustique/Musique (2025). IRCAM. https://www.ircam.fr/

Institut de Recherche et Coordination Acoustique/Musique - IRCAM (2025). Somax 2. https://forum.ircam.fr/projects/detail/somax-2/

Institut de Recherche et Coordination Acoustique/Musique - IRCAM (2025). OMax5. https://forum.ircam.fr/projects/detail/omax-5/

Juárez Bolaños, M., Olmos, A., & Ríos-Osorio, L. (Eds.). (2020). Educación en territorios rurales en Iberoamérica. Fondo Editorial de la Universidad Católica de Oriente. https://www.grade.org.pe/creer/recurso/educacion-en-territorios-rurales-en-iberoamerica/

McGurk, H., & MacDonald, J. (1976). Hearing lips and seeing voices. Nature, 264, 746–748. https://doi.org/10.1038/264746a0

Ball, P. (2023, April 19). Can we use quantum computers to make music? Physics World. https://physicsworld.com/a/can-we-use-quantum-computers-to-make-music/

Sanders, E. B.-N., & Stappers, P. J. (2008). Co-creation and the new landscapes of design. CoDesign, 4(1), 5–18. https://doi.org/10.1080/15710880701875068

Schwartz, R., Dodge, J., Smith, N. A., & Etzioni, O. (2020). Green AI. Communications of the ACM, 63(12), 54–63. https://doi.org/10.1145/3381831

Spence, C. (2011). Crossmodal correspondences: A tutorial review. Attention, Perception, & Psychophysics, 73(4), 971–995. https://doi.org/10.3758/s13414-010-0073-7

Stability AI. (2024, April 3). Stable Audio 2.0 [Press release]. https://stability.ai/news/stable-audio-2-0

Wang, B., Zhuo, L., Wang, Z., Bao, C., Chengjing, W., Nie, X., et al. (2024). Multimodal music generation with explicit bridges and retrieval augmentation. https://doi.org/10.48550/arXiv.2412.09428

Published

2025-12-26

How to Cite

OLMOS, A., & DAL FARRA, R. (2025). Poetic intelligence as creative resistance. Tsantsa. Journal of Artistic Research, (16), 3–17. Retrieved from https://publicaciones.ucuenca.edu.ec/ojs/index.php/tsantsa/article/view/6506

Issue

Section

Artículos