Detección temprana del cáncer de mama mediante la termografía en Ecuador

Authors

  • María G. Pérez Facultad de Ingeniería en Sistemas, Electrónica e Industrial, Universidad Técnica de Ambato, Ambato, Ecuador.
  • Aura Conci Universidade Federal Fluminense (UFF), CEP 24210-240, Niterói, RJ, Brazil.
  • Aida Aguilar Facultad de Ciencias de la Salud, Universidad Técnica de Ambato, Ambato, Ecuador.
  • Ángel Sánchez Departamento de Ciencias de la Computación, Universidad Rey Juan Carlos, 28933 Móstoles, Spain.
  • Víctor H. Andaluz

Abstract

RESUMEN

En los últimos reportes de Quito-Ecuador ocupa el primer lugar en diagnósticos de cáncer en las mujeres. Las campañas de concienciación y las investigaciones han permitido mejorar el diagnóstico y su tratamiento, pero en países de recursos bajos y medios aun es un problema sin resolver, debido a varios factores: diagnóstico en fases avanzadas y recursos insuficientes que ayuden en su pronta detección. Se conoce que en Ecuador por ejemplo, cerca de cuatro de cada diez mujeres diagnosticadas de cáncer de mama lo son en estadios avanzados (III y IV) cuyo tratamiento es costoso y complejo. Actualmente, según la OMS el reto para todos los países es detectar tempranamente la enfermedad. Por tanto, se debe abordar nuevos retos, tales como la búsqueda de nuevas herramientas y tecnologías costo efectivas que ofrezcan ventajas al actual método, que está basado en mamografías y auto examen. El uso de nuevas tecnologías permitirá identificar la enfermedad en estadios tempranos, lo que dará lugar a que la sobrevida libre de enfermedad aumente, los costos de la atención disminuyan y el pronóstico vital sea mayor. Este trabajo propone incorporar el uso de la termografía como complementaria al diagnóstico precoz de bajo coste y no invasiva.

Palabras clave: Procesamiento de imágenes, termografia, radiación, metabolismo, tamizaje, detección precoz, segmentación de imágenes, análisis de textura, extracción de características, Región de Interés-ROI.

ABSTRACT

Breast cancer is one of the most common cancer types among women in Quito, Ecuador. Although, awareness campaigns and researches have led to improved diagnosis and treatment, in less developed countries it still is an unresolved problem due to the diagnosis only in advanced stages and the lack of resources enabling early detection. In Ecuador, for example, about four out of ten women diagnosed with breast cancer are in advanced stages (III and IV), whose treatment is costly and complex. The World Health Organization (WHO) states that screening programs are the more efficient way to combat this disease. Therefore it is fundamental to address new researches on early detection that are cost-effective and present advantages over the current method (based on the self-examination and mammography). The identification of such disease in early stage increases the prognosis and the survival rate. This article proposes a technique to incorporate low-cost, non-invasive early diagnosis based on the use of thermal.

Keywords: Image processing, thermography, radiation, metabolism, screening, image segmentation, texture analysis, texture features, Region of Interest-ROI.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Acharya, U.R., E.Y.K. Ng, J.H. Tan, S.V. Sree, 2010. Thermography based breast cancer detection using texture features and support vector machine. Journal of Medical Systems, 01-08.

Agostini, V., M. Knaflitz, F. Molinari, 2009. Motion artifact reduction in breast dynamic infrared imaging. IEEE Transaction on Biomedical Engineering, 56(3), 903-906.

Amri, A., A. Saidane, S. Pulko, 2011. Thermal analysis of a three dimensional breast model with embedded tumour using the transmission line matrix (TLM) method. Computers in Biology and Medicine, 41(1), 76-86.

Anderson, B.O., R. Shyyan, A. Eniu, R.A. Smith, C.H. Yip, N.S. Bese, L.W. Chow, S. Masood, S.D. Ramsey, R.W. Carlson, 2005. Breast J. 2006 Jan-Feb; 12 Suppl 1:S3-15. PMID: 16430397 [PubMed - indexed for MEDLINE].

Antonini, S., D. Kolaric, I.A. Nola, Z. Herceg, V. Ramljak, T. Kulis, J.K. Holjevac, Z. Ferencic, 2011. Thermography surveillance after breast conserving surgery - three cases, 53rd Int. Symp. ELMAR, 14-16 Sep., Croatia, 317-319.

Amalu, W.C., W.B. Hobbins, J.F. Head, R.L. Elliot, 2006. Infrared imaging of the breast: an overview. In: Bronzino, J.D. (Ed.), Medical Devices and Systems: The Biomedical Engineering Handbook. CRC Press, Connecticut, USA, 25-1-25-20.

Araújo, M.C., R.C.F. Lima, M.C.R. Souza de Renata, 2014. Interval symbolic feature extraction for thermography breast cancer detection. Expert Systems with Applications, 41, 6728-6737.

Bharati, M.H., J.J. Liu, J.F. MacGregor, 2004. Image texture analysis: methods and comparisons. Chemometrics and Intelligent Laboratory Systems, 72, 57-71.

Bezerra, L.A., M.M. Oliveira, T.L. Rolim, A. Conci, F.G.S. Santos, P.R.M. Lyra, R.C.F. Lima, 2013. Estimation of breast tumor thermal properties using infrared images. Signal Processing: Signal and Image Processing Techniques for Detection of Breast Diseases, 93(10), 2851-2863.

Borchartt, T.B., A. Conci, R.C.F. Lima, R. Resmini, A. Sanchez, 2013. Breast thermography from an image processing viewpoint: A survey. Signal Processing, 93(10), 2785-2803.

Borchartt, T.B., R. Resmini, L.S. Motta, E.W.G. Clua, A. Conci, M.J.A. Viana, L.C. Santos, R.C.F. Lima, A. Sanchez, 2012. Combining approaches for early diagnosis of breast diseases using thermal imaging. International Journal of Innovative Computing and Applications, 4(3-4).

Cáncer de Mama, Diario HOY, Quito. Disponible en http://www.hoy.com.ec/noticias-ecuador/cancer-de-mama-1-500-casos-al-ano-en-el-pais-509903.html.

Cáncer de mama, MedlinePlus. Disponible en http://www.nlm.nih.gov/medlineplus/spanish/ ency/article/000913.htm.

Carlucci, L., 1972. A formal system for texture languages. Pattern Recognition, 4, 53-72.

Cross, G., A. Jain, 1983. Markov random fields feature models. IEEE Trans. Pattern Anal. Mach. Intell., 5, 25-39.

Delgado, F.G., J.G.V. Luna, 2010. Feasibility of new-generation infrared screening for breast cancer in rural communities. US Obstetrics and Gynecology, Touch Briefings, 5, 52-56.

Flusser, J., T. Suk, B. Zitova, 2009. Moments and moment invariants in pattern recognition. John Wiley & Sons, 312 pp.

Gonzalez, R.C., R.E. Woods, 2008. Digital image processing (3rd ed.). Prentice-Hall, New Jersey, USA.

Griffin, J.L., D. Perlman, 2010. Detección de cáncer de mama en mujeres con riesgo promedio y alto (en español). Obstetrics & Gynecology, 116, 1410-1421.

Haberman, J.D., T.J. Love, J.E. Francis, 1980. Screening a rural population for breast cancer using thermography and physical examination techniques: Methods and results. Ann. N. Y. Acad. Sci., 335, 492-500.

Haralick, R.M, K. Shanmugam, I. Dinstein, 1973. Textural features for image classification. IEEE Trans. Syst. Man Cybern., 3, 610-621.

Herry, C.L., M. Frize, 2002. Digital processing techniques for the assessment of pain with infrared thermal imaging. Proc. Second Joint EMBS/BMES Conf., Houston, TX, USA, 2, 1157-1158.

Instituto Nacional del Cáncer, EE.UU. Cáncer de seno (mama) masculino. Disponible en http://www.cancer.gov/espanol/pdq/tratamiento/senomasculino/patient.

Jin-Yu, Z., C. Yan, H. Xian-Xiang, 2009. IR thermal image segmentation based on enhanced genetic algorithms and two dimensional classes square error. In: 2nd Int. Conf. on Information and Computation Science, 2(1), 309-312.

Jones, B.F., P. Plassmann, 2002. Digital infrared thermal imaging of human skin. IEEE Engineering in Medicine and Biology Magazine, 21(6), 41-48.

Kafieh R., Rabbani H. (2011), Wavelet-based medical infrared image noise reduction using local model for signal and noise, IEEE Statistical Signal Processing Workshop, pp. 549-552.

Kapoor, P., S.V.A.V. Prasad, 2010. Image processing for early diagnosis of breast cancer using infrared image. 2nd Int. Conf. on Computer and Automation Engineering, 3(1), 564-566.

Kennedy, D.A., T. Lee, D. Seely, 2009. A comparative review of thermography as a breast cancer screening technique. Integrative Cancer Therapies, 8, 9-16.

Keller, J.M., S. Chen, R.M. Crownover, 1989. Texture description and segmentation through fractal geometry. Comput. Vis. Graph. Image Process., 45, 150-166.

Kerr, J., 2004. Review of the effectiveness of infrared thermal imaging (thermography) for population screening and diagnostic testing of breast cancer. NZHTA Tech. Brief Series 3(3), Division of Health Sciences, University of Otago, New Zealand.

Keyserlink, J.R., P.D. Ahlgren, E. Yu, N. Belliveau, M. Yassa, 2000. Function infrared imaging of the breast. IEEE Engineering in Medicine and Biology Magazine, 19(3), 30-41.

Koay, J., C. Herry, M. Frize, 2004. Analysis of breast thermography with an artificial neural network. In: Proc. 26th Annual International Conference on IEEE EMBS, 1159-1162.

Krawczyk, B., G. Schaefer, 2014. A hybrid classifier committee for analysing asymmetry features in breast thermograms. Applied Soft Computing, 20, 112-118.

Kontos, M., R. Wilson, I. Fentiman, 2011. Digital infrared thermal imaging (DITI) of breast lesions: sensitivity and specificity of detection of primary breast cancers. Clinical Radiology, 66, 536-539.

Manual del Usuario, FLIR Reporter, 2009. Disponible en http://support.flir.com/DocDownload/ Assets/46/Spanish/1558574$a401.pdf.

Ng, E.Y.K., E.C. Kee, 2007. Integrative computer-aided diagnostic with breast thermogram, Journal of Mechanics in Medicine and Biology, 7(1), 1-10.

Ng, E.Y.K., 2009. A review of thermography as promising non-invasive detection modality for breast tumor. International Journal of Thermal Sciences, 849-859.

Ng, E.Y.K., E.C. Kee, R.U. Acharya, 2005. Advanced technique in breast thermography analysis. In: IEEE, Proc. 27th Annual Conference of the Engineering in Medicine and Biology Society, 710-713.

Ng, E.Y.K., N.M. Sudarshan, 2004. Numerical modelling in conjunction with thermography as an adjunct tool for breast tumor detection, BMC Cancer, 4, 1-26.

Ng E.Y.K., Ung L.N., Ng F.C., and Sim L.S.J. (2001), Statistical analysis of healthy and malignant breast thermography, Journal of Medical Engineering and Technology 25(6), pp. 253-263.

Otsu, N., 1979. A thresholding selection method from grey-level histograms. IEEE Transactions on Systems, Man and Cybernetics, 9(1), 62-66.

Prabha, S., C.M. Sujatha, S. Ramakrishnan, 2014. Asymmetry analysis of breast thermograms using BM3D technique and statistical texture features. 3rd International Conference on Informatics, Electronics & Vision (ICIEV), 23-24 May, Dhaka, Bangladesh, 4 pp.

PROENG, 2012. Image processing and image analyses applied to mastology. Disponible en http://visual.ic.uff.br/en/proeng/S.

Qi, H., P.T. Kuruganti, W.E. Snyder, 2006. Detecting breast cancer from thermal infrared images by asymmetry analysis. In: The Biomedical Engineering Handbook, 3e ed., Vol. Medical Devices and Systems, Chapter 27, CRC
Press, 27.1-27.14.

Qi, H., P.T. Kuruganti, W.E. Snyder, 2008. Detecting breast cancer from thermal infrared images by asymmetry analysis. In: Diakides, N.A., J.D. Bronzino (Eds.). Medical Infrared Imaging, 11.1-11.14.

Ring, E.F.J., K. Ammer, 2000. The technique of infrared imaging in medicine. Review Thermology International, 10(1), 7-14.

Sánchez, A.N., G.J. Velásquez, 2013. Imágenes por radiación infrarroja y termografía, Escuela de Ingeniería de Antioquia (EIA) e Instituto de Ciencias de la Salud. Disponible en http://web.usal.es/~lcal/termografia_documento.pdf.

Scales, N., C. Herry, M. Frize, 2004. Automated image segmentation for breast analysis using infrared images. Proceedings of the 26th Annual International Conference of the IEEE/EMBS, San Francisco, CA, USA, 1737-1740.

Schaefer, G., M. Závišek, T. Nakashima, 2009. Thermography based breast cancer analysis using statistical features and fuzzy classification. Pattern Recognition, 42(6), 1133-1137.

Sheeja, V.F., M. Sasikala, S. Saranya, 2014. Detection of breast abnormality from thermograms using curvelet transform based feature extraction. J. Med. Syst., 38(23).

Thermography Guidelines (TG), Standards and Protocols in Clinical Thermographic Imaging. Disponible en http://www.iact-org.org/professionals/thermog-guidelines.html.

Tomita, F., S. Tsuji, 1990. Computer analysis of visual textures. Kluwer Academic Publishing, Massachusetts, USA.

Usuki, H., K. Ishimura, M. Hagiike, K. Okano, K. Izuishi, Y. Karasawa, F. Goda, H. Maeta, 2002. Thermographic examination for carcinoma, Biomedical Thermology, 21(4), 1-7.

Usuki, H., T. Ikeda, Y. Igarashi, I. Takahashi, A. Fukami, T. Yokoe, H. Sonoo, K. Asaishi, 1998. What kinds of non-palpable breast cancer can be detected by thermography? Biomedical Thermology, 18(4), 8-12.

Women's Health. Disponible en http://www.webmd.com/women/picture-of-the-breasts.

Zadeh, H.G., I.A. Kazerouni, J. Haddadnia, 2011. Distinguish breast cancer based on thermal features in infrared images. Canadian Journal on Image Processing and Computer Vision, 2(6), 54-58.

Zhou, Q., Z. Li, J.K. Aggarwal, 2004. Boundary extraction in thermal images by edge map. SAC’04 Proceedings of the 2004 ACM Symposium on Applied Computing, 254-258.

Published

2016-01-05

How to Cite

Pérez, M. G., Conci, A., Aguilar, A., Sánchez, Ángel, & Andaluz, V. H. (2016). Detección temprana del cáncer de mama mediante la termografía en Ecuador. Maskana, 5, 111–123. Retrieved from https://publicaciones.ucuenca.edu.ec/ojs/index.php/maskana/article/view/543