Social Network X as a Stage for Political and Propagandistic Debate on Ultra Processed Food Products in Mexico: A Social Network Analysis
DOI:
https://doi.org/10.25097/rep.n40.2024.04Keywords:
Ultra-processed food, Social network analysis, Food labeling, Twitter messages, MexicoAbstract
This study examines conversations with X user positions in Mexico about ultra-processed foods, which have recently been linked to obesity. Posts from 2019 and 2020 were identified through hashtags on the topics of "labeling," "ultra-processed," and "junk food." We used a mixed approach to identify word patterns and develop an analysis based on social network theory. We found 211,585 tweets and 904,484 retweets from 90,828 and 321,637 accounts, respectively. There was an emphasis on conversations during the legislative process, especially the hashtag #etiquetadoclaroya. The most intense interactions occurred in discussions about new front-of-package warnings. The most influential profiles belonged to the media, academia, and civil society. The food industry's involvement was limited, so its role in the debate is inconclusive. This method can be used in other countries to monitor discussions on regulations and other policies.
Downloads
References
Ahmed, W., Bath, P. A., Sbaffi, L. y Demartini, G. (2019). Novel insights into views towards H1N1 during the 2009 Pandemic: A thematic analysis of Twitter data. Health Information and Libraries Journal, 36(1), 60–72. https://doi.org/10.1111/hir.12247
Barrie, C., Chun-ting Ho, J., Chung-hong, C., Rico, N., König, T. y Davidson, T. (2022). academictwitteR: Access the Twitter Academic Research Product Track V2 API Endpoint. https://rdrr.io/cran/academictwitteR/
Bastian, M., Heymann, S. y Jacomy, M. (2009). Gephi: An open source software for exploring and manipulating networks. Proceedings of the International AAAI Conference on Web and Social Media, 3(1), 361–362. https://doi.org/10.1609/icwsm.v3i1.13937
Blondel, V. D., Guillaume, J.-L., Lambiotte, R. y Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. https://doi.org/10.1088/1742-5468/2008/10/p10008
Blüher, M. (2019). Obesity: global epidemiology and pathogenesis. Nature reviews. Endocrinology, 15(5), 288–298. https://doi.org/10.1038/s41574-019-0176-8
Bridges, N., Howell, G. y Schmied, V. (2018). Exploring breastfeeding support on social media. International Breastfeeding Journal, 13(1). https://doi.org/10.1186/s13006-018-0166-9
Cámara de Diputados del H. Congreso de la Unión de los Estados Unidos Mexicanos. (2014). Ley del Impuesto Especial sobre Producción y Servicios. https://www.diputados.gob.mx/LeyesBiblio/pdf/LIEPS.pdf
Cámara De Diputados del H. Congreso de la unión. (2022). Ley General de Salud. https://www.diputados.gob.mx/LeyesBiblio/ref/lgs.htm
Daly, A. J. (2010). Social network theory and educational change. Harvard Education Press.
Del Fresno García, M., Daly, A. J. y Segado Sánchez-Cabezudo, S. (2016). Identificando a los nuevos influyentes en tiempos de Internet: Medios sociales y análisis de redes sociales / Identifying the new Influencers in the Internet Era: Social Media and Social Network Analysis. Revista Española de Investigaciones Sociológicas. https://doi.org/10.5477/cis/reis.153.23
Dong, X. y Lian, Y. (2021). A review of social media-based public opinion analyses: Challenges and recommendations. Technology in Society, 67, 101724. https://doi.org/10.1016/j.techsoc.2021.101724
FAO, OPS, y UNICEF. (2022). Etiquetado nutricional en la parte frontal del envase en América Latina y el Caribe. http://dx.doi.org/10.4060/cc1545es
Fiolet, T., Srour, B., Sellem, L., Kesse-Guyot, E., Allès, B., Méjean, C., Deschasaux, M., Fassier, P., Latino-Martel, P., Beslay, M., Hercberg, S., Lavalette, C., Monteiro, C. A., Julia, C. y Touvier, M. (2018). Consumption of ultra-processed foods and cancer risk: Results from NutriNet-Santé prospective cohort. BMJ, k322. https://doi.org/10.1136/bmj.k322
Gómez-Dantés, H., Fullman, N., Lamadrid-Figueroa, H., Cahuana-Hurtado, L., Darney, B., Avila-Burgos, L., Correa-Rotter, R., Rivera, J. A., Barquera, S., González-Pier, E., Aburto-Soto, T., de Castro, E. F. A., Barrientos-Gutiérrez, T., Basto-Abreu, A. C., Batis, C., Borges, G., Campos-Nonato, I., Campuzano-Rincón, J. C., de Jesús Cantoral-Preciado, A., … Lozano, R. (2016). Dissonant health transition in the states of Mexico, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. The Lancet, 388(10058), 2386–2402. https://doi.org/10.1016/s0140-6736(16)31773-1
Hall, K. D., Ayuketah, A., Brychta, R., Cai, H., Cassimatis, T., Chen, K. Y., Chung, S. T., Costa, E., Courville, A., Darcey, V., Fletcher, L. A., Forde, C. G., Gharib, A. M., Guo, J., Howard, R., Joseph, P. V., McGehee, S., Ouwerkerk, R., Raisinger, K., … Zhou, M. (2019). Ultra-Processed diets cause excess calorie intake and weight gain: An inpatient randomized controlled trial of ad libitum food intake. Cell Metabolism, 30(1), 67-77.e3. https://doi.org/10.1016/j.cmet.2019.05.008
Harding, K., Aryeetey, R., Carroll, G., Lasisi, O., Pérez‐Escamilla, R. y Young, M. (2020). Breastfeed4Ghana: Design and evaluation of an innovative social media campaign. Maternal & Child Nutrition, 16(2). https://doi.org/10.1111/mcn.12909
Haustein, S. (2019). Scholarly twitter metrics. In Springer Handbook of Science and Technology Indicators (pp. 729–760). Springer International Publishing. http://dx.doi.org/10.1007/978-3-030-02511-3_28
Hunt, D. (2020). How food companies use social media to influence policy debates: A framework of Australian ultra-processed food industry Twitter data. Public Health Nutrition, 24(10), 3124–3135. https://doi.org/10.1017/s1368980020003353
Institute for Health Metrics and Evaluation (s.f.). GBD Compare. Retrieved August 11, 2023, from http://vizhub.healthdata.org/gbd-compare
Instituto Nacional de Estadística y Geografía e Instituto Federal de Telecomunicaciones. (2021). Comunicado de Prensa. Encuesta Nacional sobre Disponibilidad y Uso de Tecnologías de la Información en los Hogares, 2016. https://www.inegi.org.mx/contenidos/saladeprensa/boletines/2021/OtrTemEcon/ENDUTIH_2020.pdf
Lee, J. L., DeCamp, M., Dredze, M., Chisolm, M. S. y Berger, Z. D. (2014). What are health-related users tweeting? A qualitative content analysis of health-related users and their messages on twitter. Journal of Medical Internet Research, 16(10), e237. https://doi.org/10.2196/jmir.3765
Lienert, J., Schnetzer, F. y Ingold, K. (2013). Stakeholder analysis combined with social network analysis provides fine-grained insights into water infrastructure planning processes. Journal of Environmental Management, 125, 134–148. https://doi.org/10.1016/j.jenvman.2013.03.052
Marrón-Ponce, J., Tolentino-Mayo, L., Hernández-F, M. y Batis, C. (2018). Trends in ultra-processed food purchases from 1984 to 2016 in Mexican households. Nutrients, 11(1), 45. https://doi.org/10.3390/nu11010045
Monteiro, C. A., Cannon, G., Moubarac, J.-C., Levy, R. B., Louzada, M. L. C. y Jaime, P. C. (2017). The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutrition, 21(1), 5–17. https://doi.org/10.1017/s1368980017000234
Moukarzel, S., Rehm, M. y Daly, A. J. (2020a). Breastfeeding promotion on Twitter: A social network and content analysis approach. Maternal & Child Nutrition, 16(4). https://doi.org/10.1111/mcn.13053
Moukarzel, S., Rehm, M., Del Fresno, M. y Daly, A. J. (2020b). Diffusing science through social networks: The case of breastfeeding communication on Twitter. PLOS ONE, 15(8), e0237471. https://doi.org/10.1371/journal.pone.0237471
Moukarzel, S., Rehm, M., Caduff, A., Del Fresno, M., Perez-Escamilla, R. y Daly, A. J. (2021). Real-time Twitter interactions during World Breastfeeding Week: A case study and social network analysis. PLOS ONE, 16(3), e0249302. https://doi.org/10.1371/journal.pone.0249302
Murphy, G. (2004). The big book of concepts. MIT press, Boston MA.
Scott, J. y Carrington, P. J. (2011). The SAGE Handbook of Social Network Analysis. (2nd ed.). SAGE.
Secretaría de Economía. (2020). Modificación a la Norma Oficial Mexicana NOM-051-SCFI/SSA1-2010, Especificaciones generales de etiquetado para alimentos y bebidas no alcohólicas preenvasados-Información comercial y sanitaria, publicada el 5 de abril de 2010. https:// https://dof.gob.mx/2020/SEECO/NOM_051.pdf
Secretaría de Educación Pública. (2014). Acuerdo mediante el cual se establecen los lineamientos generales para el expendio y distribución de alimentos y bebidas preparados y procesados en las escuelas del Sistema Educativo Nacional. Diario Oficial de La Federación. https://www.dof.gob.mx/nota_detalle.php?codigo=5344984&fecha=16/05/2014#gsc.tab=0
Shaked, H., Schechter, C. y Daly, A. J. (2018). The impact of the “social” in social media space: A systems perspective on educational policy and leadership. In Leading holistically: How schools, districts, and states improve systemically. Routledge.
Shamah-Levy, T., Romero-Martínez, M., Barrientos-Gutiérrez, T., Cuevas-Nasu, L., Bautista-Arredondo, S., Colchero, MA., Gaona-Pineda, EB., Lazcano-Ponce, E., Martínez-Barnetche, J., Alpuche-Arana, C. y Rivera-Dommarco, J. (2021). Encuesta Nacional de Salud y Nutrición 2020 sobre Covid-19. Resultados nacionales. Cuernavaca, México: Instituto Nacional de Salud Pública.
Srour, B., Fezeu, L. K., Kesse-Guyot, E., Allès, B., Méjean, C., Andrianasolo, R. M., Chazelas, E., Deschasaux, M., Hercberg, S., Galan, P., Monteiro, C. A., Julia, C. y Touvier, M. (2019). Ultra-processed food intake and risk of cardiovascular disease: Prospective cohort study (NutriNet-Santé). BMJ, l1451. https://doi.org/10.1136/bmj.l1451
SSA, INSP, GISAMAC, UNICEF. (2023) Guías alimentarias saludables y sostenibles para la población mexicana 2023. México. https://movendi.ngo/wp-content/uploads/2023/05/Gui_as_Alimentarias_2023_para_la_poblacio_n_mexicana.pdf
Staff, W. (2018). How to use twitter: Critical tips for new users. WIRED. https://www.wired.com/story/how-to-setup-twitter-search-hashtag-and-login-help/
Statista, (2022) Statista Dossier about Twitter. Recuperado el 11 de Agosto del 2023, de https://www.statista.com/study/9920/twitter-statista-dossier/
Stefanidis, A., Vraga, E., Lamprianidis, G., Radzikowski, J., Delamater, P. L., Jacobsen, K. H., Pfoser, D., Croitoru, A. y Crooks, A. (2017). Zika in twitter: Temporal variations of locations, actors, and concepts. JMIR Public Health and Surveillance, 3(2), e22. https://doi.org/10.2196/publichealth.6925
Stennis, C. (2018). Defining what makes Twitter’s audience unique. X Blog. https://blog.twitter.com/en_us/topics/insights/2018/defining-what-makes-twitters-audience-unique
Tec-Check Organización de Consumidores en Línea A.C., El Poder del Consumidor. (2022). La industria de comida chatarra y bebidas endulzadas utiliza a niñas y niños influencers para publicitar sus productos violando la ley y los derechos de la infancia. https://elpoderdelconsumidor.org/wp-content/uploads/2023/02/b-2302-chatarra-influencer-vf.pdf
Théodore, F. L., López-Santiago, M., Cruz-Casarrubias, C., Mendoza-Pablo, P. A., Barquera, S. y Tolentino-Mayo, L. (2021). Digital marketing of products with poor nutritional quality: A major threat for children and adolescents. Public Health, 198, 263–269. https://doi.org/10.1016/j.puhe.2021.07.040
Tolentino-Mayo, L., Durán, R., Espinosa, F., Ferré, I., Munguía, A. y Barquera, S. (2023). Análisis de los argumentos recibidos en la consulta pública para el etiquetado frontal de advertencia mexicano. Salud Pública de México, 66(1, ene-feb), 67–77. https://doi.org/10.21149/14908
Vargas-Meza, J., Jáuregui, A., Pacheco-Miranda, S., Contreras-Manzano, A. y Barquera, S. (2019). Front-of-pack nutritional labels: Understanding by low- and middle-income Mexican consumers. PLOS ONE, 14(11), e0225268. https://doi.org/10.1371/journal.pone.0225268
Wasserman, S. y Faust, K. (1994). Social network analysis. Cambridge University Press. http://dx.doi.org/10.1017/cbo9780511815478
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Economy and Politics Journal
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The Journal declines any responsibility for possible conflicts derived from the authorship of the works that are published in it.
The University of Cuenca in Ecuador conserves the patrimonial rights (copyright) of the published works and will favor the reuse of the same ones, these can be: copy, use, diffuse, transmit and expose publicly.
Unless otherwise indicated, all contents of the electronic edition are distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.