Repairing and destructive effects of microorganisms in buildings

Authors

DOI:

https://doi.org/10.18537/est.v013.n026.a07

Keywords:

microorganisms, architecture, bioconstruction, biodeterioration, bio-repairing

Abstract

In architecture, microorganisms can act as heroes or villains. However, research on microorganisms has been delegated to engineering sciences and is usually conducted in parallel with architecture. This study analyzes scientific advances in biomaterials, including microorganisms that benefit materials and microorganisms that degrade buildings. The methodology consisted of a literature review, followed by a classification and description of the microorganisms to facilitate the analysis of the findings. The results revealed that some microorganisms provide materials with positive characteristics, such as greater durability, self-repair, increased compression and absorption, and most importantly, environmental sustainability. During destructive processes, microorganisms primarily affect heritage buildings because of their destructive properties. The biodegradation of buildings can be slowed, delayed, or inhibited by microorganisms; therefore, this analysis can provide an opportunity to advance materials research.

Downloads

Download data is not yet available.

References

Abo el-Enein, S., Ali, A.H., Talkhan, F., & Abdel-Gawwad, H. (2013). Application of microbial biocementation to improve the physico-mechanical properties of cement mortar. HBRC Journal, 9(1), 36-40. https://doi.org/10.1016/j.hbrcj.2012.10.004

Ackermann, P. (2018). Fotografía En Primer Plano De La Pared. PEXELS. https://www.pexels.com/es-es/foto/fotografia-en-primer-plano-de-la-pared-878167/

Alasvand, Z.K., & Ravishankar R.V. (2014). Microorganisms: Induction and inhibition of corrosion in metals. International Biodeterioration and Degradation, 87(1), 66-74. https://doi.org/10.1016/j.ibiod.2013.10.023

Alima, N. (2013, september 08). Mycotecture - Growing into form. IACC. https://www.iaacblog.com/programs/mycotecture-growing-into-form-2/

Amjad, H., Khushnood, R.A., & Ahmad, F. (2023). Enhanced fracture and durability resilience using bio-intriggered sisal fibers in concrete. Journal of Building Engineering. 76(1), 107008. https://doi.org/10.1016/j.jobe.2023.107008

Bernardi, D., DeJong, J., Montoya, B., & y Martinez, B.C. (2014). Bio-bricks: Biologically cemented sandstone bricks. Construction and Building Materials 55, 462-469. https://doi.org/10.1016/j.conbuildmat.2014.01.019

Cano, P. (2023). Materiales de construcción hechos de bacterias. Specson. https://specs-consultoria.com/blog/materiales-de-construccion-hechos-de-bacterias

Chahal, N., Siddique, R., & Rajor, A. (2012). Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of concrete incorporating silica fume. Construction and building materials 37, 645-651. https://doi.org/10.1016/j.conbuildmat.2012.07.029

Encinas, F., Soto-Liebe, K., Aguirre-Nuñez, C., González, B., Bustamante, W., Schueftan, A., Ugalde, J., Blondel, C., Truffello, R., Araya, P., & Freed, C. (2021). Covid-19 and city: Towards an integrated model of housing, microbiology, environment and urbanism. Architecture, City and Environment, 46, 1-22.

Fazio, A., Cavicchioli, A., Penna, D., Chambergo, F.S., & de Faria, D. (2015). Towards a better comprehension of biodeterioration in earthen architecture: Study of fungi colonisation on historic wall surfaces in Brazil. Journal of Cultural Heritage, 16(6), 934-938. https://doi.org/https://doi.org/10.1016/j.culher.2015.04.001

Gao, M., Guo, J., Cao, H., Wang, H., Xiong, X., Krastev, R., Nie, K., Xu, H., & Liu, L. (2020). Immobilized bacteria with pH-response hydrogel for self-healing of concrete. Journal of Environmental Management, 261, 110225. https://doi.org/10.1016/J.JENVMAN.2020.110225

Golubić, S., Pietrini, A.M., & Ricci, S. (2015). Euendolithic activity of the cyanobacterium Chroococcus lithophilus Erc. In biodeterioration of the Pyramid of Caius Cestius, Rome, Italy. International Biodeterioration and Degradation, 100, 7-16. https://doi.org/10.1016/j.ibiod.2015.01.019

Gottel, N. R., Megan, S. H., Maxwell, J. N., Sarah, M. A., Karsten, Z., & Jack, A. G. (2024) Biocontrol in built environments to reduce pathogen exposure and infection risk. The ISME Journal, 18 (1), 1-11. https://doi.org/10.1093/ismejo/wrad024

Harvey, I., (2023). Magic mushrooms turn construction waste into building blocks. Construct Connect. https://canada.constructconnect.com/dcn/news/technology/2020/08/magic-mushrooms-turn-construction-waste-into-building-blocks

Huang, Y.H., Chen, H.J., Maity, J.P., Chen, C.C. (2020). Efficient option of industrial wastewater resources in cement mortar application with river-sand by microbial induced calcium carbonate precipitation. Scientific Reports, 10, 6742. https://doi.org/10.1038/s41598-020-62666-9

Jonkers, H.M., & Schlangen, E. (2009). Bacteria-based self-healing concrete. International Journal of Restoration of Buildings and Monuments, 15(4), 255-265. https://doi.org/10.1515/rbm-2009-6304

Lors, C., Aube, J., Guyoneaud, R., Vandenbulcke, F., & Damidot, D. (2018). Biodeterioration of mortars exposed to sewers in relation to microbial diversity of biofilms formed on the mortars surface. Internationational Biodeterioration and Degradation, 130, 23-31. https://doi.org/10.1016/j.ibiod.2018.03.012

Lv, J., Mao, J., & Ba, H. (2015). Influence of marine microorganisms on the permeability and microstructure of mortar. Construction and Building Materials, 77, 33–40. https://doi.org/10.1016/j.conbuildmat.2014.11.072

Manso, S., Calvo-Torras, M.A., Belie, N.D., Segura, I., & Aguado, A. (2015). Evaluation of natural colonisation of cementitious materials: Effect of bioreceptivity and environmental conditions. Science of The Total Environment. 512–513 (15), 444-453. https://doi.org/10.1016/j.scitotenv.2015.01.086

Martin Manzanares, C. (2017). Construcción viva: sinergia entre materiales y microorganismos. Thesis. Universidad Politécnica de Madrid.

Marco, A., Santos, S., Caetano, J., Pintado, M., Vieira, E., & Moreira, P.R. (2020). Basil essential oil as an alternative to commercial biocides against fungi associated with black stains in mural painting. Building and Environment, 167, 106459. https://doi.org/10.1016/j.buildenv.2019.106459

Melton, L. (2022). How to grow cement. Nature Biotechnology, 40, 286. https://doi.org/10.1038/s41587-022-01264-8

Nasser, A.A., Sorour, N.M., Saafan, M.A., Abbas, R.N. (2022). Microbially-Induced-Calcite-Precipitation (MICP): A biotechnological approach to enhance the durability of concrete using Bacillus pasteurii and Bacillus sphaericus. Heliyon, 8, e09879. https://doi.org/10.1016/j.heliyon.2022.e09879

Ornek, D., Jayaraman, A., Syrett, B.C., Hsu, C.H., Mansfeld, F.B. Wood, T.K. (2002). Pitting corrosión inhibition of aluminum 2024 by Bacillus Biofilms secreting polyaspartate or y-polyglutamate. Applied Microbiology Biotechnology, 58, 651-657.

Pozo, A. (2021). La vertiente biotec de los materiales tradicionales y nuevos. Thesis. Universidad Politécnica de Madrid.

Roig-Flores, M., Formagini, S. & Serna, P. (2021). Self-healing concrete: What Is it Good For? Materiales de Construcción, 71, e237. https://doi.org/10.3989/mc.2021.07320

Sánchez-Henao. C.P., Jiménez-Castillon, D.A. & Ruiz-Múnera, J.I. (2006). Uso de un aditivo biológico para mejorar las propiedades físico-mecánicas y térmicas del hormigón. Revista Facultad de Ingeniería de Antioquia (36) 96-109.

Shirakaw, M., Beech, I.B., Tapper, R., Cincotto, M.A., & Gambale, W. (2003). The development of a method to evaluate bioreceptivity of indoor mortar plastering to fungal growth. Internationational Biodeterioration and Degradation, 51, 83-92. http://www.elsevier.com/locate/ibiod

Singh, T. (2010, January 11). Creating Roads from Sand and Bacteria Instead of Oil. INHABITAT. https://inhabitat.com/creating-roads-from-sand-and-bacteria-instead-of-oil/

Sterflinger, K., Little, B., Pinar, G., Pinzari, C., de los Rios, A., & Gu, J.D. (2018). Future directions and challenges in biodeterioration research on historic materials and cultural properties. International Biodeterioration and Biodegradation, 129, 10-12. https://doi.org/10.1016/j.ibiod.2017.12.007

Stohl, L. & Manninger, T., Werder, J., Dehn, F., Gorbushina, A., & Meng, B. (2023). Bioreceptivity of concrete: A review. Journal of Building Engineering, 76(1), 107201. https://doi.org/10.1016/j.jobe.2023.107201

Walraven, J. C., & Stoelhorst D. (2008). Tailor made concrete structures: new solutions for our society. CRC Press/Balkema.

YingYing, H., Liu, W., Wang, W., Jia, X., Xu, L., Cao, Q., Shen, J., Hu, X. (2020). Biomineralization Performance of Bacillus sphaericus under the Action of Bacillus mucilaginosus. Advances in Materials Science and Engineering. 2020, 1-9. https://doi.org/10.1155/2020/6483803

Downloads

Published

2024-07-31

How to Cite

Córdova Albores, L. C., & Ríos Llamas, C. (2024). Repairing and destructive effects of microorganisms in buildings. Estoa. Journal of the Faculty of Architecture and Urbanism, 13(26), 109–122. https://doi.org/10.18537/est.v013.n026.a07