Nuevo algoritmo para la detección de bordes en imágenes para esteganografía
Resumen
ABSTRACT
The present research investigation addresses information security in the area of Software Engineering. Using steganography and cryptography, an improvement was proposed to the Canny Edge detection algorithm to hide information in a multimedia environment, encrypting the message with the symmetric cryptographic algorithm Advanced Encryption Standard (AES) to increase security. Netbeans was applied as the development environment and the following tools to perform the tests on the images: IonForge ImageDiff to compare pixel to pixel differences, Beyond Compare to compare hex code, StegSecret to perform test steganos and Digital Invisible Ink Toolkit to perform Benchmark tests. Two prototypes were developed: in Prototype I the standard Canny Edge detection algorithm was used, and in Prototype II the new proposal for improvement of the Canny Edge detection algorithm. Both prototypes were incorporated in the AES symmetric cryptographic algorithm. Results revealed that Prototype II performs better because the information incorporated in the multimedia environment is more diffuse, resistant to the analysis, and the results of the metrics related to the quality of the image Peak Signal To Noise Ratio (PSNR) Mean Square Error (MSE) are more optimal.
Keywords: Advanced Encryption Standard (AES), Canny Edge, computer security.
RESUMEN
La presente investigación corresponde al tipo de track científico, del área de Ingeniería de Software referente a la seguridad de la información. Utilizando la esteganografía y la criptografía se propuso una mejora al algoritmo de detección Canny Edge para ocultar información en un medio multimedia, cifrando el mensaje con el algoritmo criptográfico simétrico Advanced Encryption Standard (AES) para incrementar la seguridad. Se utilizó Netbeans como ambiente de desarrollo y las siguientes herramientas para realizar las pruebas en las imágenes: IonForge ImageDiff para comparar pixel a pixel las diferencias, Beyond Compare para comparar el código hexadecimal, StegSecret para realizar pruebas de estegoanálisis y Digital Invisible Ink Toolkit para realizar pruebas de benchmark. Se desarrolló dos prototipos: en el Prototipo I se utilizó el algoritmo de detección Canny Edge estándar y en el Prototipo II se utilizó la nueva propuesta de mejora del algoritmo de detección Canny Edge, a los dos prototipos se les incorporó el algoritmo criptográfico simétrico AES. De los resultados obtenidos de las pruebas realizadas, se concluye que el Prototipo II es mejor debido a que la información incorporada en el medio multimedia es más difusa, es resistente a estegoanálisis y los resultados de las métricas relacionadas a la calidad de la imagen Peak Signal to Noise Ratio (PSNR) Mean Square Error (MSE) son más óptimas.
Palabras clave: Advanced Encryption Standard (AES), Canny Edge, seguridad informática.
Descargas
Métricas
Citas
Comunidad OWASP (2009). Owasp. Obtenido de Cryptanalysis https://www.owasp.org/index.php/Cryptanalysis
Fridrich, J., Goljan, M., & Du, R. (2001). Reliable detection of LSB steganography in color and grayscale images. New York. Obtenido de https://www.ws.binghamton.edu/fridrich/Research/acm_2001_03.pdf
Gaba, J., & Kumar, M. (2013). Implementation of steganography using CES technique. IEEE Second International Conference on Image Information Processing (ICIIP) (págs. 395-399). Shimla: IEEE.
ionForge (2014). ionForge ImageDiff. Obtenido de http://www.ionforge.com
Jabbar, A., Alaa, A., Sahib, S., & Zamani, M. (2013). An introduction to image steganography techniques. Advanced Computer Science Applications and Technologies (ACSAT), 2012 International Conference on (pág. 5). IEEE.
Kamdar, N., Kamdar, D., & Khandhar, D. (2013). Performance Evaluation of LSB bases Steganography for Optimization of PSNR and MSE. Journal of Information, Knowledge and Research in Electronics and Communication Engineering, 2(2), 505-509.
Kaur, J., & Verma, H. (2013). A hybrid approach for image security by combining encryption and steganography. Image Information Processing (ICIIP) (págs. 607-611). IEEE.
Lerch-Hostalot, D., & Megías, D. (2014). Esteganografía en zonas ruidosas de la imagen. Actas de la XIII Reunión Española sobre Criptología y Seguridad de la Información (págs. 173-178). Alicante: Universidad de Alicante.
Mikiazo (2013). Cryptography. Obtenido de http://crypto.stackexchange.com/questions/8043/aes-addroundkey
Mishra, R., Mishra, A., & Bhanodiya, P. (2015). An edge based image steganography with compression and encryption. Computer, Communication and Control (IC4). IEEE.
Muñoz, A. (2007). Stegsecret. Obtenido de http://stegsecret.sourceforge.net/
National Instruments (2015). What is the Peak Signal to Noise Ratio (PSNR) measurement in NI Picture Quality Analysis (PQA)? Obtenido de http://digital.ni.com/public.nsf/allkb/ CA0C16A29F6C089586257E2000773991
Netbeans (2015). Netbeans. Obtenido de https://www.netbeans.org
Nurhayati & Ahmad, S. S. (2015). Steganography for inserting message on digital image using least significant bit and AES cryptography algorithm. Cyber and IT Service Management, International. IEEE.
Qiang, S., Guoying, M., & Hongmei, Z. (2016). An edge-detection method based on adaptive canny algorithm and iterative segmentation threshold. Control Science and Systems Engineering (ICCSSE) (págs. 64-67). IEEE.
Rodríguez, G., & Navas, S. (2016). Esteganografía: Sustitución LSB 1 bit utilizando Matlab. XVIII Workshop de Investigadores en Ciencias de la Computación (WICC 2016, Entre Ríos, Argentina), (págs. 859-864).
Rodríguez, M., Navas, S., & Eterovic, J. (2014). Aplicación del filtro de Canny en la esteganografía digital. WICC 2014 XVI Workshop de Investigadores en Ciencias de la Computación, (págs. 806-811).
Saini, J., Verma, H. (2013). A hybrid approach for image security by combining encryption and steganography. IEEE Second International Conference on Image Information Processing (ICIIP) (págs. 607-611). Shimla: IEEE.
Singla, D., & Juneja, M. (2014). New information hiding technique using features of image. Journal of Emerging Technologies in Web Intelligence, 6(2), 237-242.
University of Waikato Computer Science Department (2016). Digital Invisible Ink Toolkit. Obtenido de http://diit.sourceforge.net/
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Copyright © Autors. Creative Commons Attribution 4.0 License para cualquier artículo enviado a partir del 6 de junio de 2017. Para los manuscritos presentados anteriormente, se utilizó la licencia CC BY 3.0.
Usted es libre de:
![]() |
Compartir — compartir y redistribuir el material publicado en cualquier medio o formato. |
![]() |
Adaptar — combinar, transformar y construir sobre el material para cualquier propósito, incluso comercialmente. |
Bajo las siguientes condiciones:
![]() |
Atribución — Debe otorgar el crédito correspondiente, proporcionar un enlace a la licencia e indicar si se realizaron cambios. Puede hacerlo de cualquier manera razonable, pero de ninguna manera que sugiera que el licenciador lo respalda a usted o a su uso. |
Sin restricciones adicionales: no puede aplicar términos legales o medidas tecnológicas que restrinjan legalmente a otros a hacer cualquier cosa que permita la licencia. |
Mayor información sobre este acuerdo de autoría y licencia, transferencia de derechos o solicitudes de reproducción, pueden ser consultados en este enlace.