Optimización de contactos telefónicos efectivos en gestión de cobranzas mediante un modelo de mejor horario de llamada, usando regresión multinomial

Palabras clave: regresión multinomial, inteligencia de negocios, análsis de negocios, big data, centro de llamadas, contactabilidad

Resumen

Los Centros de llamadas (en inglés Call Centers) representan una industria consolidada a nivel mundial y una de sus actividades es la gestión de cobranzas. El presente trabajo propone un modelo estadístico predictivo para aumentar la probabilidad de contactabilidad telefónica en la gestión de cobranzas a través del mejor horario de llamada. Esto lleva directamente a considerar más de dos posibilidades, es decir, nos enfrentamos a un problema de respuesta multicategórica por lo que se especifica un modelo multinomial. Los datos de corte transversal utilizados en el análisis empírico provienen de una empresa de cobranza de gran escala situada en Ecuador. Los individuos, objeto de este análisis, son prestatarios que se encontraban en mora de productos de crédito de consumo y de microcrédito. El estudio incluye el análisis de aproximadamente 6,000 individuos y el tratamiento de 139 variables explicativas, recogidas en un período histórico entre enero y septiembre de 2016. Los resultados sugieren que información histórica de contactabilidad, día de la semana, características del contrato moroso y la propensión de pago (dada por la razón del saldo en atraso entre el corto plazo y largo plazo), son determinantes de un contacto telefónico efectivo.

Descargas

La descarga de datos todavía no está disponible.

Citas

Anderson, R. (2007). The credit scoring toolkit: Theory and practice for retail credit risk management and decision automation. Oxford, UK: OUP.

Bayrak, H., Bulbul, A. A., Conser, E. T., Bergh, G. de, Dorai, C., Veen, A. (2013). US20130060587A1. United States. Retrieved from https://patents.google.com/patent/US20130060587A1/en

Bendel, R. B., Afifi, A. A. (1977). Comparison of stopping rules in forward ‘stepwise’ regression. Journal of the American Statistical Association, 72(357), 46-53. https://doi.org/10.2307/2286904

Chen, H. (2011). Editorial: Design science, grand challenges, and societal impacts. ACM Transactions on Management Information Systems (TMIS), 2(1), 1-10. https://doi.org/10.1145/1929916.1929917

Cunningham, P., Martin, D., Brick, J. M. (2003). An experiment in call scheduling. In: Proceedings of the Survey Research Methods Section, American Statistical Association, pp. 59-66. Nashville, TN, USA: American Statistical Association. Retrieved from http://ww2.amstat.org/sections/srms/proceedings/y2003/Files/JSM2003-000306.pdf

Durrant, G. B., D’Arrigo, J., Steele, F. (2011). Using field process data to predict best times of contact conditioning on household and interviewer influences. Journal of the Royal Statistical Society. Series A: Statistics in Society, 174(4), 1029-1049.

Hand, D. J., Till, R. J. (2001). A simple generalization of the area under the ROC curve for multiple class classification problems. Machine Learning, 45(2), 171-186. https://doi.org/10.1023/A:1010920819831

Kreuter, F., Müller, G. (2015). A note on improving process efficiency in panel surveys with para data. Field Methods, 27(1), 55-65. https://doi.org/10.1177/1525822X14538205

Landgrebe, T., Duin, R. P. W. (2006). A simplified extension of the area under the ROC to the multiclass domain. Delft, The Netherlands: Delft University of Technology. Disponible en https://pdfs.semanticscholar.org/dc70/1e7fca147e2bf37f14481e35e1b975396809.pdf?_ga=2.32111294.1451026522.1529313596-700634931.1501938280

Loftus, S. C., House, L. L., Hughey, M. C., Walke, J. B., H, M., Belden, L. K. (2015). Dimension reduction for multinomial models via a Kolmogorov-Smirnov measure (KSM) Technical No. 15-1, 19 p. Blacksburg, VA, USA: Virginia Tech. Retrieved from https://www.stat.vt.edu/about/research/research-technical-reports.html

Milone, G. (2004). Estatistica geral e aplicada. Editora Pioneira Thomson Learning. Retrieved from https://www.estantevirtual.com.br/livros/giuseppe-milone/estatistica-geral-e-aplicada/1704135913

Park, S. H., Huh, S. Y., Oh, W., Han, S. P. (2012). A social network-based inference model for validating customer profile data. MIS Quarterly: Management Information Systems, 36(4), 1217-1238.

Wooldridge, J. (2012). Introductory econometrics: A modern approach (5th ed.). Michigan, US: Michigan State University, Cengage Learning.

Publicado
2018-06-28
Estadísticas
Resumen visto = 69 veces
PDF descargado = 98 veces
Cómo citar
Uquillas-Andrade, A., & Carrera, A. (2018). Optimización de contactos telefónicos efectivos en gestión de cobranzas mediante un modelo de mejor horario de llamada, usando regresión multinomial. Maskana, 9(1), 89-103. https://doi.org/10.18537/mskn.09.01.09
Sección
Artículos