Spatial analysis of PM10 in the air and its metals composition with relation to environmental factors surrounding preschool educational centers in Cuenca
DOI:
https://doi.org/10.18537/mskn.11.01.06Keywords:
Particulate matter, heavy metals, health effects, environmental factors, CuencaAbstract
Particulate matter (PM) air pollution, as a consequence of increasing traffic, is of high concern for public health in urban areas. The PM draws major attention, first because by its micrometric sizes can particles penetrate the lungs and hinder the gas exchange, and secondly due to its chemical composition including the presence of heavy metals, which can damage the biological systems. Despite its detrimental effects for the entire population, kids are more vulnerable because of its developing stage. It is known that PM concentrations can be influenced by street characteristics, meteorology, and the presence of surrounding vegetation, which constitute environmental factors related to the generation, dispersion, and deposition of PM. Due to the necessity of reducing population exposure to this type of pollution, the present study analyzed the correlation of environmental factors of generation, dispersion and deposition based on the available secondary information with the concentration of PM10, and metals (lead, cadmium, copper, and zinc) in air samples collected at 21 initial education centers in the city of Cuenca. The obtained results indicate low relationships between pollutants and environmental factors, the presence of high variability in pollutant concentrations, and PM10 levels often exceeding the limits established by the World Health Organization and national law.
Downloads
Metrics
References
Agency for Toxic Substances & Disesase Registry. (2017). Lead (Pb) Toxicity: What are the U.S. standards for lead levels? 185 pp. USA: Agency for Toxic Substances and Disease Registry https://www.atsdr.cdc.gov/csem/csem.asp?csem=34&po=8
Astudillo-Alemán, A. L., Ramirez Orellana, M. I., Garcia Alvear, N. B., Gónzales Arévalo, G. J., Gutierrez Valle, I. A., & Bailón Moscoso, N. C. (2015). Caracterización química del material particulado PM10 de la zona urbana de Cuenca- Ecuador e investigación de su genotoxicidad e inducción de estrés oxidativo en células epiteliales alveolares A549. Revista de Toxicología, 32, 121-126.
Bost, M., Houdart, S., Oberli, M., Kalonji, E., Huneau, J. F., & Margaritis, I. (2016). Dietary copper and human health: Current evidence and unresolved issues. Journal of Trace Elements in Medicine and Biology, 35, 107-115. https://doi.org/10.1016/j.jtemb.2016.02.006
Buyadi, S. N. A., Mohd, W. M. N. W., & Misni, A. (2015). Vegetation’s Role on Modifying Microclimate of Urban Resident. Procedia - Social and Behavioral Sciences, 202(December 2014), 400-407. https://doi.org/10.1016/j.sbspro.2015.08.244
Cakmak, S., Dales, R., Kauri, L. M., Mahmud, M., Van Ryswyk, K., Vanos, J., Liu, L., Kumarathasan, P., Thomson, E., Vincent, R., & Weichenthal, S. (2014). Metal composition of fine particulate air pollution and acute changes in cardiorespiratory physiology. Environmental Pollution, 189, 208-214. https://doi.org/10.1016/j.envpol.2014.03.004
Cordero, X., & Guillén, V. (2013). Diseño y validación de vivienda bioclimática para la ciudad de Cuenca. 2, 61-75. https://publicaciones.ucuenca.edu.ec/ojs/index.php/estoa/article/ viewFile/303/256
Donahue, N. M. (2018). Air Pollution and Air Quality. Green Chemistry, 151-176. https://doi.org/10.1016/B978-0-12-809270-5.00007-8
EMOV EP. (2014). Inventario de Emisiones Atmosféricas del Canton Cuenca 2014. Emov Ep, Red de monitoreo de la calidad del aire de Cuenca, December, 76. https://doi.org/10.13140/RG.2.2.17665.66405
Farghaly, O. A., & Ghandour, M. A. (2005). Square-wave stripping voltammetry for direct determination of eight heavy metals in soil and indoor-airborne particulate matter. Environmental Research, 97(3), 229-235. https://doi.org/10.1016/j.envres.2004.07.007
Flora, S. J. S., Flora, G., & Saxena, G. (2006). Environmental occurrence, health effects and management of lead poisoning. In: Lead (pp. 158-228). Elsevier. https://doi.org/10.1016/B978-044452945-9/50004-X
Fortoul, T. I., Rodriguez-Lara, V., Gonzalez-Villalva, A., Rojas-Lemus, M., Colin-Barenque, L., Bizarro-Nevares, P., García-Peláez, I., Ustarroz-Cano, M., López-Zepeda, S., Cervantes-Yépez, S., López-Valdez, N., Meléndez-García, N., Espinosa-Zurutuza, M., Cano-Gutierrez, G., & Cano-Rodríguez, M. C. (2015). Health Effects of Metals in Particulate Matter. In: Current Air Quality Issues: Vol. i (Issue tourism, p. 13). InTech. https://doi.org/10.5772/59749
GAD Municipal. (2014). Categorización de la demanda de transporte de Cuenca. 1.
Ilustre Municipalidad de Cuenca. (2015). Plan de Desarrollo y ordenamiento territorial del Cantón Cuenca.
Ishida, S., Andreux, P., Poitry-Yamate, C., Auwerx, J., & Hanahan, D. (2013). Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proceedings of the National Academy of Sciences, 110(48), 19507-19512. https://doi.org/10.1073/pnas.1318431110
Janhäll, S. (2015). Review on urban vegetation and particle air pollution - Deposition and dispersion. Atmospheric Environment, 105, 130-137. https://doi.org/10.1016/j.atmosenv.2015.01.052
Jenks, G. F. (1967). The data model concept in statistical mapping. International Yearbook of Cartography, 8(4), e61104.
Jiang, L.-F., Yao, T.-M., Zhu, Z.-L., Wang, C., & Ji, L.-N. (2007). Impacts of Cd(II) on the conformation and self-aggregation of Alzheimer’s tau fragment corresponding to the third repeat of microtubule-binding domain. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1774(11), 1414-1421. https://doi.org/10.1016/j.bbapap.2007.08.014
Kalisa, E., Fadlallah, S., Amani, M., Nahayo, L., & Habiyaremye, G. (2018). Temperature and air pollution relationship during heatwaves in Birmingham, UK. Sustainable Cities and Society, 43, 111-120. https://doi.org/10.1016/j.scs.2018.08.033
Karner, A. A., Eisinger, D. S., & Niemeier, D. A. (2010). Near-roadway air quality: Synthesizing the findings from real-world data. Environmental Science and Technology, 44(14), 5334-5344. https://doi.org/10.1021/es100008x
Kim, C.-H., Yoo, D.-C., Kwon, Y.-M., Han, W.-S., Kim, G.-S., Park, M.-J., Kim, Y.-S., & Choi, D.-W. (2010). A study on characteristics of atmospheric heavy metals in subway station. Toxicological Research, 26(2), 157-162. https://doi.org/10.5487/TR.2010.26.2.157
Kliengchuay, W., Meeyai, A. C., Worakhunpiset, S., & Tantrakarnapa, K. (2018). Relationships between meteorological parameters and particulate matter in Mae Hong Son province, Thailand. International Journal of Environmental Research and Public Health, 15(12), 1-13. https://doi.org/10.3390/ijerph15122801
Laing, S., Wang, G., Briazova, T., Zhang, C., Wang, A., Zheng, Z., Gow, A., Chen, A. F., Rajagopalan, S., Chen, L. C., Sun, Q., & Zhang, K. (2010). Airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues. American Journal of Physiology-Cell Physiology, 299(4), C736-C749. https://doi.org/10.1152/ajpcell.00529.2009
Landsat 8 Data Users Handbook (2018). Landsat missions. https://landsat.usgs.gov/landsat-8-l8-data-users-handbook-section-5
Lenschow, P. (2001). Some ideas about the sources of PM10. Atmospheric Environment, 35(1), 23-33. https://doi.org/10.1016/S1352-2310(01)00122-4
Li, H., Qian, X., & Wang, Q. (2013). Heavy metals in atmospheric particulate matter: A comprehensive understanding is needed for monitoring and risk mitigation. Environmental Science and Technology, 47(23), 13210-13211. https://doi.org/10.1021/es404751a
Martini, A., Biondi, D., Batista, A. C., Martini, A., Biondi, D., & Batista, A. C. (2018). Distance and intensity of microclimatic influence provided by urban forest typologies. Floresta e Ambiente, 25(2), 1-12. https://doi.org/10.1590/2179-8087.021317
Mejia, D., Zegarra, R., Astudillo, A., & Moscoso, D. (2018). Análisis de partículas sedimentables y niveles de presión sonora en el área urbana y periférica de Cuenca. Revista de La Facultad de Ciencias Químicas, 19, 55-64.
Mohankumar, S., & Senthilkumar, P. (2017). Particulate matter formation and its control methodologies for diesel engine: A comprehensive review. Renewable and Sustainable Energy Reviews, 80(June), 1227-1238. https://doi.org/10.1016/j.rser.2017.05.133
Mohanraj, R., Azeez, P. A., & Priscilla, T. (2004). Heavy metals in airborne particulate matter of urban Coimbatore. Archives of Environmental Contamination and Toxicology, 47(2), 162-167. https://doi.org/10.1007/s00244-004-3054-9
Monks, P., Allan, J., Carruthers, D., Carslaw, D., Fuller, G., OBE, R. H., Heal, M., Lewis, A., Nemitz, E., Williams, M., & Reeves, C. (2013). Non-exhaust emissions from road traffic. 93 pp. Disponible en https://uk-air.defra.gov.uk/assets/documents/reports/cat09/1907101151_20190709_Non_Exhaust_Emissions_typeset_Final.pdf
Niu, J., Liberda, E. N., Qu, S., Guo, X., Li, X., Zhang, J., Meng, J., Yan, B., Li, N., Zhong, M., Ito, K., Wildman, R., Liu, H., Chen, L. C., & Qu, Q. (2013). The role of metal components in the cardiovascular effects of PM2.5. PLoS ONE, 8(12), e83782. https://doi.org/10.1371/journal.pone.0083782
Penkała, M., Ogrodnik, P., & Rogula-Kozłowska, W. (2018). Particulate matter from the road surface abrasion as a problem of non-exhaust emission control. Environments, 5(1), 1-13. https://doi.org/10.3390/environments5010009
Perera, F. (2018). Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: Solutions exist. International Journal of Environmental Research and Public Health, 15(1), 1-16. https://doi.org/10.3390/ijerph15010016
Popoola, L. T., Adebanjo, S. A., & Adeoye, B. K. (2018). Assessment of atmospheric particulate matter and heavy metals: a critical review. International Journal of Environmental Science and Technology, 15(5), 935-948. https://doi.org/10.1007/s13762-017-1454-4
Rehman, K., Fatima, F., Waheed, I., & Akash, M. S. H. (2018). Prevalence of exposure of heavy metals and their impact on health consequences. Journal of Cellular Biochemistry, 119(1), 157-184. https://doi.org/10.1002/jcb.26234
Rodas Espinoza, C. R., Mora Verdugo, M. A., Neira Molina, V. A., Andrade Tenesaca, D. S., Ochoa, A. M., Argudo, D. M., Parra, A., & Orellana, D. (2017). Enfermedades alérgicas. Ecuador: CEDIA. https://www.cedia.edu.ec/es/proyectos-ganadores/cepra-xi/enfermedades-alergicas
Roohani, N., Hurrell, R., Kelishadi, R., & Schulin, R. (2013). Zinc and its importance for human health: An integrative review. Journal of Research in Medical Sciences, 18(2), 144-157.
Roupsard, P., Amielh, M., Maro, D., Coppalle, A., Branger, H., Connan, O., Laguionie, P., Hébert, D., & Talbaut, M. (2013). Measurement in a wind tunnel of dry deposition velocities of submicron aerosol with associated turbulence onto rough and smooth urban surfaces. Journal of Aerosol Science, 55, 12-24. https://doi.org/10.1016/j.jaerosci.2012.07.006
Singh, K. B. (2012). Long term excessive Zn supplementation induced oxidative stress in Wistar rats fed on semi-synthetic diet. Food and Nutrition Sciences, 3(06), 724-731. https://doi.org/10.4236/fns.2012.36098
Tang, J., McNabola, A., Misstear, B., Pilla, F., & Alam, M. S. (2019). Assessing the impact of vehicle speed limits and fleet composition on air quality near a school. International Journal of Environmental Research and Public Health, 16(1), 1-23. https://doi.org/10.3390/ijerph16010149
Tarantino, G. (2013). Exposure to ambient air particulate matter and non-alcoholic fatty liver disease. World Journal of Gastroenterology, 19(25), 3951-3956. https://doi.org/10.3748/wjg.v19.i25.3951
U.S. Environmental Protection Agency. (2001). Control of emissions of hazardous air pollutants from mobile sources. USA: Environmental Protection Agency. 45 pp.
Wong, D. W., Yuan, L., & Perlin, S. A. (2004). Comparison of spatial interpolation methods for the estimation of air quality data. Journal of Exposure Analysis and Environmental Epidemiology, 14(5), 404-415. https://doi.org/10.1038/sj.jea.7500338
World Health Organization. (2006). Principles for evaluating health risks in children associated with exposure to chemicals (Vol. 237). 329 pp. Disponible en https://apps.who.int/iris/handle/10665/43604
World Health Organization (WHO). (2013). Review of evidence on health aspects of air pollution - REVIHAAP Project: final technical report. 309 pp. Disponible en http://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report-final-version.pdf?ua=1
Yitshak-Sade, M., Kloog, I., & Novack, V. (2017). Do air pollution and neighborhood greenness exposures improve the predicted cardiovascular risk? Environment International, 107, 147-153. https://doi.org/10.1016/j.envint.2017.07.011
Published
How to Cite
Issue
Section
License
Copyright © Autors. Creative Commons Attribution 4.0 License. for any article submitted from 6 June 2017 onwards. For manuscripts submitted before, the CC BY 3.0 License was used.
You are free to:
Share — copy and redistribute the material in any medium or format |
Adapt — remix, transform, and build upon the material for any purpose, even commercially. |
Under the following conditions:
Attribution — You must give appropriate credit, provide a link to the licence, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licenser endorses you or your use. |
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the licence permits. |