Powers of integer numbers as the sum of consecutive odd numbers

Authors

  • Marco Vásquez Instituto Tecnológico Andrés F. Córdova, Cañar, Ecuador

DOI:

https://doi.org/10.18537/mskn.04.02.05

Keywords:

natural number, odd, sum, power formula

Abstract

In this paper it is demonstrated that the power (p + q) of a natural number (n), can be derived as the sum of a series of consecutive odd numbers. The series of the summation is conditioned by a lower and upper boundary, being equal to half the difference plus 1, and respectively half the sum of the powers p and q of the natural number. The algorithm, notwithstanding its simplicity, offers some interesting opportunities in the applications of number theory to numerical analysis.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Bazsó, A., H.M. Pintér, C. Srivastava, 2012. A refinement of Faulhaber’s theorem concerning sums of powers of natural numbers. Appl. Math. Lett., 25, 486-489.

De Santa Cruz, M.G., 1794. Dorado contador. Aritmética especulativa y práctica. Imprenta de don Benito Cano, Madrid, España, pp. 4-6.

Gaussianos.com, 2007. Sumando números impares. Descargado de http://gaussianos.com en 2011.

Knuth, D.E., 1993. Johann Faulhaber and sum of powers. Math. Comp., 61(203), 277-294.

Sen, S.K., H. Agarwal, 2006. 2n in scientific computation and beyond. Math. Comput. Modelling, 43, 658-672.

Published

2013-12-25

How to Cite

Vásquez, M. (2013). Powers of integer numbers as the sum of consecutive odd numbers. Maskana, 4(2), 59–69. https://doi.org/10.18537/mskn.04.02.05

Issue

Section

Research articles