Synthesis and characterization of magnetic nanoparticles of type Fe3O4 / TiO2, effect of pH on dispersion and stabilization in aqueous solutions
Keywords:
magnetic nanoparticles, titania, magnetite, core-shell, Rietveld method, Scherrer's equationAbstract
Magnetic nanoparticles of Fe3O4/TiO2 (core/shell) type were synthesized by a method combining chemical co-precipitation for the initial synthesis of Fe3O4 and sol-gel synthesis for the making of the TiO2 shell film. The magnetic nanoparticles were characterized before and after the coating process by X-ray, field emission scanning electron microscope and scanning electron microscope with X-ray microanalysis. The structural refinement analysis by the Rietveld method was performed through the FullProf program from X-ray powder diffraction, which confirmed the presence of Fe3O4 as iron oxide and the anastase phase of TiO2 as shell layer. The crystal size was calculated by Scherer’s equation and around 10nm for both the Fe3O4 core and TiO2 shell. According the field emission scanning electron microscope, the coated magnetic nanoparticles are spherical and they are highly agglomerated. The exclusive presence of Fe, Ti and O was confirmed by scanning electron microscope with X-ray microanalysis. Finally, the dispersion of aqueous Fe3O4/TiO2 nanoparticles was evaluated at different pH values by ultraviolet spectroscopy in the ultraviolet and visible range. The highest values of absorbance were obtained at pH 8 and 4,5; showing good dispersion. On the other hand, at pH 6,5 there is tendency to agglomerate with subsequent precipitation.
Downloads
Metrics
References
Alarifi, A., N.M. Deraz, S. Shaban, 2009. Structural, morphological and magnetic properties of NiFe2O4 nano-partcles. J. Alloy. Compd., 486(1-2), 501-506.
Alvarez, P.M., J. Jaramillo, F. López-Piñero, P.K. Plucinski, 2010. Preparation and characterizatin of magnetic TiO2 nanoparticles and their utilization for the degradation of emerging pollutants in water. Appl. Catal., B, 100(1-2), 338-345.
Amstad, E., T. Gillich, I. Bilecka, M. Textor, E. Reimhult, 2009. Ultrastable iron oxide nanoparticle colloidal suspensions using dispersants with catechol-derived anchor groups. Nano Lett., 9(12), 4042-4048.
Beydoun, D., R. Amal, 2002. Implications of heat treatment on the properties of a magnetic iron oxide-titanium dioxide photocatalyst. Mater. Sci. Eng., B, 94, 71-81.
Beydoun, D., R. Amal, G. Low, S. McEvoy, 2000. Novel photocatalyst: Titania-coated magnetite. Activity and photodissolution. J. Phys. Chem. B, 104(18), 4387-4396.
Cai, R., Y. Kubota, T. Shuin, H. Sakai, K. Hashimoto, A. Fujishima, 1992. Introduction of cytotoxicity by photoexcited TiO2 particles. Cancer Res., Advances in Brief, 52, 2346-2348.
Carp, O., C. Huisman, A. Reller, 2004. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem., 32(1-2), 33-117.
European Pharmacopoeia, 2005. Buffer solutions, pp. 430-435. Descargado de http://lib.njutcm.edu.cn/yaodian/ep/EP5.0/04_reagents/4.1.__reagents_standard_solutions_
buffer_solutions/4.1.3.%20Buffer%20solutions.pdf en julio de 2013.
Gao, J., H. Gu, B. Xu, 2009. Multifunctional magnetic nanoparticles: Design, synthesis and biomedical applications. Acc. Chem. Res., 42(8), 1097-1107.
Guiot, C., O. Spalla, 2013. Stabilization of TiO nanoparticles in complex medium through a pH adjustment protocol. Environ. Sci. Technol., 47(2), 1057-1064.
Jubb, A.M., H.C. Allen, 2010. Vibrational spectroscopic characterization of hematite, maghemite and magnetite thin films produced by vapor deposition. ACS Appl. Mater. Inter., 2(10), 2804-2812.
Kalbacova, M., J.M. Macak, F. Schmidt-Stein, C.T. Mierke, P. Schmuki, 2008. TiO2 nanotubes: Photocatalyst for cancer cell killing. Phys. Status Solidi RRL., 2(4), 194-196.
Kan, X., Q. Zhao, D. Shao, Z. Geng, Z. Wang, J-J. Zhu, 2010. Preparation and recognition properties of bovine hemoglobin magnetic molecularly imprinted polymers. J. Phys. Chem. B, 114(1), 3999-4004.
Kim, D.K., Y. Zhang, W. Voit, K.V. Rao, M. Muhammed, 2001. Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J. Magn. Magn. Mater., 225(1-2), 30-36.
Kubota, Y., T. Shuin, C. Kawasaki, M. Hosaka, H. Kitamura, R. Cai, H. Sakai, K. Hashimoto, A. Fujishima, 1994. Photokilling of T-24 human bladder cancer cells with titanium dioxide. Br. J. Cancer, 70(6), 1107-1111.
Mahshid, S., M. Askari, M.S. Chamsari, 2007. Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. J. Mater. Process. Tech., 189(1-3), 296-300.
Maity, D., D.C. Agrawal, 2007. Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. J. Magn. Magn. Mater., 308(1), 46-55.
Mandzy, N., E. Grulke, T. Druffel, 2005. Breakage of TiO2 agglomerates in electrostatistically stabilized aqueous dispersions. Powder Technol., 160(2), 121-126.
McCusker, L.B., R.B. Von Dreele, D.E. Cox, D. Louër, P. Scardi, 1999. Rietveld refinement guidelines. J. Appl. Crystallogr., 32(1), 36-50.
Narayanan, K.B., N. Sakthivel, 2010. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci., 156(1-2), 1-13.
Nikolić, M.P., K.P. Giannakopoulos, D. Stamopoulos, E.G. Moshopoulou, V.V. Srdić, 2012. Synthesis and characterization of silica core/nano-ferrite shell particles. Mater. Res. Bull., 47(6), 1513-1519.
Safaei-Naeini, Y., M. Aminzare, F. Golestani-Fard, F. Khorasanizadeh, E. Salahi, 2012. Suspension stability of titania nanoparticles studied by UV-VIS spectroscopy method. Iran. J. Mat. Sci. Technol., 9(1), 62-68.
Sakthivel, S., R. Prasanna Venkatesh, 2012. Solid state synthesis of nano-mineral particles. Int. J. Mining Sci. Technol., 22(5), 651-655.
Sakurai, S., A. Namai, K. Hashimoto, 2009. First observation of phase transformation of all four Fe2O3 phases (y → ε → β → α-Phase). J. Am. Chem. Soc., 131(29), 18299-18303.
Seo, J.W., H. Chung, M.Y. Kim, J. Lee, I.H. Choi, J. Cheon, 2007. Development of water-soluble single-crystalline TiO2 nanoparticles for photocatalytic cancer-cell treatment. Small, 3(5), 850-853.
Watson, S., J. Scott, D. Beydoun, R. Amal, 2005. Studies on the preparation of magnetic photocatalysts. J. Nanopart. Res., 7(6), 691-705.
Wu, W., Q. He, C. Jiang, 2008. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res. Lett., 3(11), 397-415.
Yamaguchi, S., H. Kobayashi, T. Narita, K. Kanehira, S. Sonezaki, Y. Kubota, S. Terasaka, Y. Iwasaki, 2010. Novel photodynamic therapy using water-dispersed TiO2-polyethylene glycol antitumor effect on glioma cells and spheroids in vitro. Photochem. Photobiol., 86(4), 964-971.
Zanella, R., 2012. Metodologías para la síntesis de nanopartículoas: Controlando forma y tamaño. Mundo Nano, 5(1), 71-83.
Zhang, M., X. He, L. Chen, Y. Zhang, 2011. Preparation and characterization of iminodiacetic acid-functionalized magnetic nanoparticles and its selective removal of bovine hemoglobin. Nanotechnol., 22(6), 065705-065713.
Zheng, X., S. Yuan, Z. Tian, S. Yin, J. He, K. Liu, L. Liu, 2009. Nickel/nickel phosphide core-shell structured nanoparticles: Synthesis, chemical and magnetic architecture. Chem. Mater., 21(20), 4839-4845.
Downloads
Published
How to Cite
Issue
Section
License
Copyright © Autors. Creative Commons Attribution 4.0 License. for any article submitted from 6 June 2017 onwards. For manuscripts submitted before, the CC BY 3.0 License was used.
You are free to:
Share — copy and redistribute the material in any medium or format |
Adapt — remix, transform, and build upon the material for any purpose, even commercially. |
Under the following conditions:
Attribution — You must give appropriate credit, provide a link to the licence, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licenser endorses you or your use. |
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the licence permits. |