Lógica borrosa para la estimación de estados críticos de una pila de combustible PEM

Autores/as

  • Wilton E. Agila CIDIS-FIEC, Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo, Km. 30.5 vía Perimetral, Guayaquil, Ecuador, P.O. Box 09-01-5863.
  • Víctor M. Huilcapi GISCOR, Facultad de Ingenierías, Universidad Politécnica Salesiana (UPS), Robles 107 y Chambers 227 y 5 de Junio, Guayaquil, Ecuador, P.O. Box 09-01-4752.

Resumen

RESUMEN

La determinación en tiempo real de los estados críticos de operación de la pila de combustible de membrana intercambio protónico (siglas en ingles, PEM) es uno de los principales retos para los sistemas de control de pilas de combustible PEM. En este trabajo, se presenta el desarrollo e implementación de un método no invasivo de bajo coste basado en técnicas de decisión borrosa que permite estimar los estados críticos de operación de la pila de combustible PEM. La estimación se realiza mediante perturbaciones al estado de operación de la pila y el análisis posterior de la evolución temporal del voltaje generado por la pila. La implementación de esta técnica de estimulación-percepción de estado de la pila de combustible para la detección de estados críticos constituye una novedad y un paso hacia el control autónomo en óptimas condiciones de la operación de las pilas de combustible PEM.

Palabras clave: Caracterización de pilas de combustible PEM, estado de inundación y deshidratación de la membrana polimérica, árbol de decisión borroso, control, lógica difusa.

ABSTRACT

The real time determination of the critical states of operation of the fuel cell proton exchange membrane (acronym in English, PEM) is one of the main challenges for the control systems of PEM fuel cells. In this paper, the development and implementation of a non-invasive low cost method based on fuzzy decision techniques to estimate the critical states of operation of the PEM fuel cell is presented. The estimation is performed by perturbations of the state of operation of PEM fuel cell and the subsequent analysis of the temporal evolution of the voltage generated by the cell. The implementation of this stimulation-perceived technique of the state of fuel cell for the detection of critical states is a novelty and a step towards autonomous control in optimal operation of PEM fuel cells.

Keywords: PEMFC characterization, membrane flooding and dehydratation state, fuzzy decision tree, control, fuzzy logic.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Agila, W., D. Guinea, E. Villanueva, M.C. García-Alegre, D.M. Guinea, 2007. Test station for Proton-Exchange-Membrane fuel-cells characterization. Patente Española. Referencia de patente: CSIC 200700544. Solicitada en 2007.

García-Alegre, M.C., 1991. Inteligencia artificial en el control de procesos: Controladores borrosos, Mundo Electrónico, 214, 42-49.

García-Alegre, M.C., J. Rivas, D. Martín, M. Santos, 2010. Aprendizaje mediante arboles de decisión. © RA-MA.Hombrados, J.A., L. González, M.A. Rubio, W. Agila, D. Guinea, E. Chinarro, B. Moreno, J.R. Jurado, 2005. Symmetrical electrode mode for PEMFC characterization by impedance spectroscopy. Journal of Power Sources, 151, 25-31.

Larminie, J., A. Dicks, 2000. Fuel cell systems explained. John Wiley & Sons, Inc.

Marrony, M., R. Barrera, S. Quenet, S. Ginocchio, 2008. Durability and lifetime prediction of baseline proton exchange membrane fuel cell under severe operating conditions. Journal of Power Sources, 182, 469-475.

Minard, K.R., W. Viswanathan, P.D. Majors, L.Q. Wang, P.C. Rieke, 2006. Magnetic resonance imaging (MRI) of PEM dehydration and gas manifold flooding during continuous fuel cell operation. Journal of Power Source, 161, 856-863.

Natarajan, D., T. Van Nguyen, 2005. Current distribution in PEM fuel cells. Part 1: Oxygen and fuel flow rate effects. AIChE, 51(9), 2587-2598.

O’Hayre, R., S.W. Cha; W. Colella; F.B. Prinz, 2001. Fuel cell fundamentals. John Wiley & Sons, Inc.

Rubio, MA., A. Urquia, S. Dormido, 2010. Diagnosis of performance degradation phenomena in PEM fuel cell. International Journal of Hydrogen Energy, 35, 2586-2590.

Taniguchi, A., T. Akita, K. Yasuda, Y. Miyazaki, 2008. Analysis of degradation in PEMFC caused by cell reversal during air starvation. International Journal of Hydrogen Energy, 33, 2323-2329.

Wang, F.B., B.S. Jou, C.W. Li, A. Su, S.H. Chan, 2008. The effect of low humidity on the uniformity and stability of segmented PEM fuel cells. Journal of Power Sources, 181, 251-258.

Yager, R.R., D.P. Filev, 1994. Essentials fuzzy modeling and control. John Wiley & Sons, Inc.

Descargas

Publicado

2016-01-05

Cómo citar

Agila, W. E., & Huilcapi, V. M. (2016). Lógica borrosa para la estimación de estados críticos de una pila de combustible PEM. Maskana, 5, 13–22. Recuperado a partir de https://publicaciones.ucuenca.edu.ec/ojs/index.php/maskana/article/view/533