Mecanismo de posicionamiento en Azimut y Elevación para la optimización de radioenlaces punto a punto basado en algoritmos de búsqueda espectral y técnicas de muestreo
Abstract
RESUMEN
En este trabajo se presenta un algoritmo de búsqueda espectral en Azimut y Elevación para la óptima recepción de señal RF en radioenlaces punto a punto, el cual se describe. Para ello, se ha construido un mecanismo experimental que permite adquirir la intensidad de radiación en Azimut y Elevación para diversas posiciones angulares basado en técnicas de muestreo y medición en campo lejano. Estas técnicas proporcionan un método rápido y simple para la adquisición de datos; se ha desarrollado un software para ejecutar este procedimiento de medición y búsqueda espectral, el cual permite la eficiente determinación y posicionamiento espacial en el punto óptimo localizado. Se propone un ejemplo de un radioenlace entre edificios con antenas patch alineadas con el mecanismo propuesto, luego se evalúa su desempeño a través de un presupuesto energético con modelos de propagación teóricos muy conocidos.
Palabras clave: Radioenlaces, optimización, modelo de propagación, presupuesto energético, campo lejano, técnicas de muestreo, antena patch.
ABSTRACT
In this paper an algorithm of spectral search in Azimuth and Elevation to obtain an optimal reception of RF signals in point-to-point radio links is described. An experimental mechanism that allows acquiring the radiation intensity in Azimuth and Elevation for various angular positions based on field sampling and measuring techniques, was built. These techniques provide a fast and simple method for acquiring data; software was developed to execute this measuring and spectral search procedure, which allows an efficient determination and space positioning in the located optimal point. An example of a radio link between two buildings with patch antennas aligned with the proposed mechanism was used, and the performance evaluated through the energy budget with theoretical well known models of propagation.
Keywords: Radio links, optimization, propagation model, energy budget, far field, sampling techniques, patch antenna.
Downloads
Metrics
References
Grace, M., R. Abou-Jaoude, K. Noujeim, D. Bradley, 2000. 76 GHz Radar Antenna Alignment System. 30th European Microwave Conference, 1(4).
Hassan, A.K., A. Hoque, A. Moldsvor, 2011. Automated Micro-Wave (MW) antenna alignment of Base Transceiver Stations: Time optimal link alignment. Australasian Telecommunication Networks and Applications Conference (ATNAC) , 1(5), 9-11.
IEEE Standard Test Procedures for Antennas, 2008. IEEE Std. 149™-1979, 5-9.
ITU-R REC P.1411-4, 2007. Propagation data and prediction methods for the planning of short range outdoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 100 GHz. ITU, Geneva,Switzerland, 1-6.
ITU-R REC P.525-2, 1994. Calculation of free space attenuation. ITU, Geneva, Switzerland.
Seybold, J., 2005. Introduction to RF propagation (1a ed.), Editorial John Wiley & Sons, New Jersey, 208-216.
Tougas, A., S. Einhor, 2003. MicroWorlds EX Robotics. LEGO RCX Edition, ISBN 2-89371-536-2.
Downloads
Published
How to Cite
Issue
Section
License
Copyright © Autors. Creative Commons Attribution 4.0 License. for any article submitted from 6 June 2017 onwards. For manuscripts submitted before, the CC BY 3.0 License was used.
You are free to:
Share — copy and redistribute the material in any medium or format |
Adapt — remix, transform, and build upon the material for any purpose, even commercially. |
Under the following conditions:
Attribution — You must give appropriate credit, provide a link to the licence, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licenser endorses you or your use. |
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the licence permits. |