Modelización hidrogeológica de una cuenca cárstica

Authors

  • C. I. Montalvo Centro de Hidrología y Clima, Departamento de Recursos Hídricos y Ciencias Ambientales (iDRHiCA), Dirección de Investigación (DIUC), Universidad de Cuenca (UC), Cuenca, Ecuador.
  • O. A. Abril Centro de Hidrología y Clima, Departamento de Recursos Hídricos y Ciencias Ambientales (iDRHiCA), Dirección de Investigación (DIUC), Universidad de Cuenca (UC), Cuenca, Ecuador.
  • R. F. Vázquez Centro de Hidrología y Clima, Departamento de Recursos Hídricos y Ciencias Ambientales (iDRHiCA), Dirección de Investigación (DIUC), Universidad de Cuenca (UC), Cuenca, Ecuador. Facultad de Ingeniería, Universidad de Cuenca, Cuenca, Ecuador.

Abstract

RESUMEN

La hidrología superficial y la subterránea de una cuenca cárstica ubicada en Bélgica se modelaron aplicando el código distribuido y basado en la descripción de procesos físicos MIKE SHE. La calibración y posterior validación del modelo se llevaron a cabo mediante un análisis temporal y uno espacial. Adicionalmente, se realizó un análisis de sensibilidad de las predicciones del modelo modificando los valores de los parámetros calibrados, el mismo que sugiere que el parámetro más sensible a las predicciones de flujo superficial y subterráneo es el coeficiente de conductividad hidráulica horizontal debido a la gran influencia de la capa cárstica modelada, lo cual tiene congruencia con lo observado en campo. Las predicciones tanto superficiales como subterráneas obtenidas pueden considerarse como aceptables, lo cual alienta el potencial empleo del modelo desarrollado en tareas futuras de planeamiento y gestión de los recursos hídricos.

Palabras clave: Modelización, MIKE SHE, modelo distribuido, modelo basado en principios físicos, análisis de sensibilidad, hidrogeología.

ABSTRACT

The surface and groundwater hydrology of a karst catchment located in Belgium was modelled using the distributed physically based code MIKE SHE. The calibration and validation processes were carried out through a common split-sample (i.e., temporal) analysis as well as through a more specialised multi-site (i.e., spatial) analysis. Further, a sensitivity analysis was run varying the calibrated parameters beyond their calibration values, which showed that the most sensitive parameter for the simulation of both surface as well groundwater flows, is the horizontal hydraulic conductivity of the karst layer, in congruence to what has been observed in situ. Both, the surface and groundwater model predictions can be regarded as being satisfactory, encouraging the future use of the developed model for planning and management purposes.

Keywords: Modelling, MIKE SHE, distributed model, physically based model, sensitivity analysis, hydrogeology.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abbott, M.B., J.C. Bathurst, J.A. Cunge, P.E. O’Connel, J. Rasmussen, 1986. An introduction to the European Hydrological System – Système Hydrologique Europèen, “SHE” 1. History and philosophy of a physically-based, distributed modelling system. Journal of Hydrology, 87, 45-59.

Anderson, M.P., W.W. Woessner, 1992. Applied Groundwater Modelling Simulation of Flow and Advective Transport. USA, University Press, 296 pp.

Chow, V T., 1959. Open channel hydraulics. McGraw-Hill Book Company: New York, USA; 680 pp.

Chow, V.T., D.R. Maidment, L.W. Mays, 1988. Applied Hydrology. McGraw-Hill international editions, Singapore, 572 pp.

DHI, 1998a. MIKE SHE v.5.3 User Guide and Technical Reference Manual. Danish Hydraulic Institute, Denmark, 50 pp.

DHI, 2000. MIKE SHE, User Manual Volume 1: User Guide v. 2000, Danish Hydraulic Institute, Denmark, 396 pp.

El-Nasr, A., R.F. Vázquez, K. Christiaens, J. Feyen, 2002. Analysis of the hydrologic cycle of the JEKER and NETE river basin using the MIKE SHE modelling tool. Institute for Land and Water Management, Katholieke Universiteit Leuven, Vital Decosterstraat 102, B-3000 Leuven, Belgium, 94 pp.

Gupta, H.V., S. Sorooshian, P.O. Yapo, 1998. Toward improved calibration of hydrologicmodels: multiple and non-commensurable measures of information. Water ResourcesResearch ,34(4), 751-763.

Nash, J.E., J.V. Sutcliffe, 1970. River flow forecasting through conceptual models, I, A discussion of principles. Journal of Hydrology, 10, 282-290.

Refsgaard, J.C., 1997. Parameterisation, calibration and validation of distributed hydrological models. Journal of Hydrology, 198, 69-97.

Sánchez-Vila, X., D. Fernández-García, 2007. Gestión de los recursos hídricos: Los modelos hidrogeológicos como herramienta auxiliar. Enseñanza de las Ciencias de la Tierra, (15.3), 250-256.

Vázquez, R.F., 1997. Numerical bi-dimensional modelling of the Brusselean aquifer. Memorias del VII Congreso Nacional de Hidráulica, Quito, (1), 307-321.

Vázquez R.F., J. Feyen, 2007. Assessment of the effects of DEM gridding on the predictions of basin runoff using MIKE SHE and a modelling resolution of 600 m. Journal of Hydrology, 334, 73-87.

Vázquez, R.F., H. Hampel, 2014. Prediction limits of a catchment hydrological model using different estimates of ETp. Journal of Hydrology, 513, 216-228.

Vázquez, R.F., L. Feyen, K. Christiaens, A. El-Nasr, J. Feyen, 1999. Calibration and Validation of the MIKE SHE application to the basin of the Gete river. Internal publicaction K.U. Leuven, Belgium, 79 pp.

Vázquez, R.F., L. Feyen, J. Feyen, J.C. Refsgaard, 2002. Effect of grid-size on effective parameters and model performance of the MIKE SHE code applied to a medium sized catchment. Hydrological Processes, 16(2), 355-372.

Vázquez, R.F., P. Willems, J. Feyen, 2008. Improving the predictions of a MIKE SHE catchment-scale application by using multi-criteria approach. Hydrological Processes, 22(13), 2159-2179.

Published

2016-01-05

How to Cite

Montalvo, C. I., Abril, O. A., & Vázquez, R. F. (2016). Modelización hidrogeológica de una cuenca cárstica. Maskana, 5, 135–147. Retrieved from https://publicaciones.ucuenca.edu.ec/ojs/index.php/maskana/article/view/561