Optimization of gas and nutrient concentrations in the photobioreactor system

Authors

  • Edmundo Recalde Posso Pontificia Universidad Católica del Ecuador Sede Ibarra
  • Luis Roca Pérez Universidad de Valencia https://orcid.org/0000-0002-5225-4155
  • María Rosa Mosquera Lozada Universidad de Santiago de Compostela

DOI:

https://doi.org/10.18537/mskn.16.02.11

Keywords:

Combustion gases, gas capture, Scenedesmus sp, nutrients, microalgae

Abstract

Microalgae research provides technological solutions for capturing greenhouse gases by converting industrial CO₂ emissions into commercially valuable microalgal biomass, such as agricultural biostimulants. This process simultaneously combines environmental benefits through emission reduction with the production of industrially relevant bioproducts. To optimize their growth in photobioreactors, determining optimal nutrient levels and CO₂ concentration is critical. In pilot tests, a nitrogen dosage of 100 ppm maximized yield (2.95 g m⁻²d⁻¹ at harvest 5). Additionally, three CO₂ concentrations (500, 1000, and 1500 ppm) were evaluated, supplied via diesel-generated combustion gases, with no significant differences in biomass production observed. The microalga Scenedesmus, enriched with Nitrofoska (1 ml L⁻¹), demonstrated that high CO₂ concentrations did not impair its performance. Thus, captured gases are converted into microalgal biomass, suitable as a biostimulant, proving a sustainable solution for industrial emissions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Blair, M. F., Kokabian, B., y Gude, V. G. (2014). Light and growth medium effect on Chlorella vulgaris biomass production. Journal of Environmental Chemical Engineering, 2(1), 665-674. doi: https://doi.org/10.1016/j.jece.2013.11.005

Chegukrishnamurthi, M., Shahabazuddin, M., Sreevathsan, S., Sarada, R., y Narayan, S. (2020). Ozonation as non-thermal option for bacterial load reduction of Chlorella biomass cultivated in airlift photobioreactor 1230. Journal of Cleaner Production, 276(123029). doi: https://doi.org/10.1016/j.jclepro.2020.123029

Chew, K. W., Yap, J. Y., Show, P. L., Suan, N. H., Juan, J. C., Ling, T. C., . . . Chang, J. S. (2017). Microalgae biorefinery: High value products perspectives. Bioresource Technology, 229, 53-62. doi: https://doi.org/10.1016/j.biortech.2017.01.006

Huang, Y., Xiong, W., Liao, Q., Fu, Q., Xia, A., Zhu, X., & Sun, Y. (2016). Comparison of Chlorella vulgaris biomass productivity cultivated in biofilm and suspension from the aspect of light transmission and microalgae affinity to carbon dioxide. Bioresource Technology, 122. doi: https://doi.org/10.1016/j.biortech.2016.09.099

Kumar, A., & Bera, S. (2020). Revisiting nitrogen utilization in algae: A review on the process of regulation and assimilation. Bioresource Technology Reports, 12. https://doi.org/10.1016/j.biteb.2020.100584

Lee, E., & Zhang, Q. (2016). Integrated co-limitation kinetic model for microalgae growth in anaerobically digested municipal sludge centrate. Algal Research, 8, 15-24. https://doi.org/10.1016/j.algal.2016.05.019

Lu, W., Alam, A., Liu, S., Xu, J., & Parra, R. (2020). Critical processes and variables in microalgae biomass production coupled with bioremediation of nutrients and CO2. Science of The Total Environment, 716(135247), https://doi.org/10.1016/j.scitotenv.2019.135247

Marín, C., Estrada, J., Delgado, J., Zapata, P., y Peñuela, M., (2024). Cyanobacteria and microalgae as potential sources of biofertilizers: a review. Actualidades Biológicas, 46(120), e4606. https://doi.org/10.17533/udea.acbi/v46n120a06

Naď, M., Brummer, V., Lošák, P., Máša, V., Sukačová, K., Tatarová, D., Pernica, M., y Procházková, M. (2023). Waste-to-energy plants flue gas CO₂ mitigation using a novel tubular photobioreactor while producing Chlorella algae. Journal of Cleaner Production, 385, 135721. https://doi.org/10.1016/j.jclepro.2022.135721

Nagi, M., He, M., Li, D., Gebreluel, T., Cheng, B., y Wang, C. (2020). Utilization of tannery wastewater for biofuel production: New insights on microalgae growth and biomass production. Sci Rep 10, 1530 (2020). https://doi.org/10.1038/s41598-019-57120-4

Osorio, J., Valenzuela, H, Pizaña, J., Ramírez, D., Meléndez, E., López, M., Castañeda, M.D., Coronado, K., Gomes, R., Sosa, J., Melchor, E., Iqbal, H., Parra, R., y Martínez, M. (2023). Microalgae-Based Biotechnology as Alternative Biofertilizers for Soil Enhancement and Carbon Footprint Reduction: Advantages and Implications. Mar Drugs, 21(2),93. https://doi.org/10.3390/md21020093

Sharma, R., Singh, G., y Sharma, V. (2011). Comparison of different media formulations on growth, morphology and Chlorophyll content of green alga, Chlorella vulgaris. International Journal of Pharma and Bio Sciences, 2(2), 509-516

Sharma, A., Sarkar, P., Chhabra, M., Kumar, A., Kumar, A., Kothadia, H., y Mallick, A. (2023). Carbon capture from petrol-engine flue gas: Reviving algae-based sequestration with integrated microbial fuel cells. Chemical Engineering Journal, 476, 146578. https://doi.org/10.1016/j.cej.2023.146578

Shayesteh, H., Vadiveloo, A., Bahri, P. y Moheimani, N. (2021). Can CO2 addition improve the tertiary treatment of anaerobically digested abattoir effluent (ADAE) by Scenedesmus sp. (Chlorophyta)? Algal Research. https://doi.org/10.1016/j.algal.2021.102379

Yang, Y., Tang, S. y Chen, J. P. (2024). Carbon capture and utilization by algae with high concentration CO₂ or bicarbonate as carbon source. Science of The Total Environment, 918, 170325. https://doi.org/10.1016/j.scitotenv.2024.170325

Young, Y., Kumar, A., Eui, M., Seok, W. y Jun, S. (2019). Microalgae Bioenergy with Carbon Capture and Storage (BECCS): An emerging sustainable bioprocess for reduced CO2 emission and biofuel production. Bioresource Technology Reports, 7. https://doi.org/10.1016/j.biteb.2019.100270.

Zhao, Zhao, B., Su, Y., Zhang, Y. y Cui, G. (2015). Carbon dioxide fixation and biomass production from combustion flue gas using energy microalgae. Energy, 89, 347-357. https://doi.org/10.1016/j.energy.2015.05.123

Published

2025-12-29

How to Cite

Recalde Posso, E., Roca Pérez, L., & Mosquera Lozada, M. R. (2025). Optimization of gas and nutrient concentrations in the photobioreactor system . Maskana, 16(2), 173–185. https://doi.org/10.18537/mskn.16.02.11

Issue

Section

Research articles