OpenMP implementation of the horizontal diffusion method of the weather research and forecasting (WRF) model

Autores/as

  • Ronald M. Gualán-Saavedra Universidad de Cuenca
  • Lizandro D. Solano-Quinde

Resumen

ABSTRACT
This article analyzes and implements the Horizontal Diffusion method of the Weather Research and Forecast (WRF) model, using the OpenMP API to exploit the multi-core power of an Intel Xeon computer. The main scope of the study is to assess well established concepts related to scalability and cache efficiency by mean of three experiments where the use of appropriate profilers shows to be of great utility to understand computing behavior and consequently to choose some optimization approaches.
Keywords: OpenMP, Multi-core programming, Weather Research and Forecasting (WRF) model, Horizontal Diffusion method, Dynamic Solver, Intel Xeon CPU.

RESUMEN
En este artículo se analiza e implementa el método de Difusión Horizontal del modelo WRF (Weather Research and Forecast), utilizando la API OpenMP para explotar el procesamiento de equipos multi-núcleo Intel Xeon. El objetivo principal del estudio es evaluar conceptos bien establecidos relacionados con la escalabilidad y eficiencia de caché por medio de tres experimentos en los que el uso de perfiladores apropiados demuestra ser de gran utilidad para comprender el comportamiento y, en consecuencia, ayuda a elegir algunos enfoques de optimización.
Palabras clave: OpenMP, Programación multi-core, Weather research and forecasting (WRF), Método de difusión horizontal, Solver dinámico, CPU Intel xeon.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Dagum, L., R. Enon, 1998. OpenMP: an industry standard API for shared-memory programming. Comput. Sci. Eng. IEEE, 5, 46-55.

Fürlinger, K., 2010. OpenMP application profiling-state of the art and directions for the future. Procedia Comput. Sci., 1, 2107-2114.

Gao, D., T.E. Schwartzentruber, 2011. Optimizations and OpenMP implementation for the direct simulation Monte Carlo method. Comput. Fluids, 42, 73–81.

Gualán-Saavedra, R.M., L.D. Solano-Quinde, 2015. GPU Acceleration of the Horizontal Diffusion method in the Weather Research and Forecasting (WRF) Model. Presented at the APCASE2015, IEEE, Quito, Ecuador.

Lorenz, D., P. Philippen, D. Schmidl, F. Wolf, 2012. Profiling of OpenMP tasks with Score-P. In: Parallel Processing Workshops (ICPPW), 41st Int. Conf. on, IEEE, pp. 444-453.

MediaWiki, n.d. Perf Wiki [WWW Document]. URL https://perf.wiki.kernel.org/index.php/ Main_Page (accessed 5.25.15).

Rauber, T., G. Rünger, 2013. Parallel programming: For multicore and cluster systems. Springer Science & Business Media.

Skamarock, W., J.B. Klemp, J. Dudhia, D.O. Gill, D.M. Barker, M.G. Duda, Y.-Y. Huang,

W. Wang, J.G. Powers, 2008. A Description of the Advanced Research WRF Version 3.

Top500.org, n.d. Home TOP500 Supercomputing Sites [WWW Document]. URL http://www.top500.org/ (accessed 9.27.12)

Descargas

Publicado

2015-12-05

Cómo citar

Gualán-Saavedra, R. M., & Solano-Quinde, L. D. (2015). OpenMP implementation of the horizontal diffusion method of the weather research and forecasting (WRF) model. Maskana, 6(Supl.), 99–105. Recuperado a partir de https://publicaciones.ucuenca.edu.ec/ojs/index.php/maskana/article/view/702

Artículos más leídos del mismo autor/a