Modelo origen destino para estimar el flujo de tráfico usando algoritmos genéticos
Abstract
RESUMEN
En este trabajo se ha desarrollado un nuevo método basado en Inteligencia Artificial para resolver un problema del matriz origen-destino (O-D) aplicado al caso de una red de tráfico vehicular en la ciudad de Ambato. El método implementado, basado en algoritmos genéticos (AG), resuelve el problema de minimización asociado al problema de matriz O-D. Para validar la técnica, se ha utilizado una red vial correspondiente a la zona del Mercado Modelo en la ciudad de Ambato, que es una zona de alta congestión vehicular.
Palabras clave: Redes de tráfico, algoritmos genéticos, optimización.
ABSTRACT
A new method, based on Artificial Intelligence for solving the Origin-Destination problem (O-D), was developed and applied to the vehicular traffic network of the city of Ambato. The method, based on genetic algorithms (GA), solves the minimization problem associated with the O-D problem. To validate the technique, it has been used the Mercado Modelo network from the Ambato city, which is an area of high vehicular traffic congestion.
Keywords: Traffic networks, genetic algorithms, optimization.
Downloads
Metrics
References
Castillo, E., 2008. Traffic estimation and optimal counting location without path enumeration using bayesian networks. Computer Aided and Infrastructure Engineering, 23, 189-207.
Cortez, C., W. Contreras, L. Mota, 2011. Análisis y Diseño de redes viales de transporte urbano usando algoritmos genéticos, Caso Lima Metropolitana. Revista de Investigación de Sistemas e Informática (RISI), 8(2), 53-65.
DTM Dirección de Tránsito y Movilidad, 2006. Departamento encargado del control de tránsito del la Ciudad de Ambato. Seccion Técnica de Señalización Vial.
Haupt, R.L., S.E. Haupt, 2004. Practical genetic algorithms (2ª ed.). John Wiley & Sons, Ltd., 261 pp.
Tebaldi, C., M. West, 1998. Bayesian Inference on network traffic using link count data. Journal of the American Statistical Association, 93(442), 557-573.
Vardi, Y., 1996. Network tomography: estimating source-destination traffic intensities from link data. Journal of the American Statistical Association, 91(433), 365-377.
Vaton, S., J.S. Bedo, 2004. Network traffic matrix: how can one learn the prior distributions from the link counts only. IEEE International Conference on Communications Society, 2138-2142.
Zhang, J., 2006. Origin-destination network tomography with Bayesian Inversion approach. IEEE/ACM International Conference on Web Intelligence, 8 pp.
Downloads
Published
How to Cite
Issue
Section
License
Copyright © Autors. Creative Commons Attribution 4.0 License. for any article submitted from 6 June 2017 onwards. For manuscripts submitted before, the CC BY 3.0 License was used.
![]()
You are free to:
![]() |
Share — copy and redistribute the material in any medium or format |
![]() |
Adapt — remix, transform, and build upon the material for any purpose, even commercially. |
Under the following conditions:
![]() |
Attribution — You must give appropriate credit, provide a link to the licence, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licenser endorses you or your use. |
| No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the licence permits. |








