Metodología de ayuda a la decisión mediante SIG e Inteligencia Artificial: aplicación en la caracterización demográfica de Andalucía a partir de su residencia

  • Francisco Javier Abarca-Alvarez Departamento de Urbanística y Ordenación del Territorio Universidad de Granada
  • Francisco Sergio Campos-Sánchez Departamento de Urbanística y Ordenación del Territorio Universidad de Granada
  • Rafael Reinoso-Bellido Departamento de Urbanística y Ordenación del Territorio Universidad de Granada

Resumen

Los Sistemas de Información Geográfica (SIG) han sido ampliamente utilizados para el almacenamiento y gestión de la información territorial, mostrándose especialmente útiles para el análisis y para la verificación de hipótesis previamente formuladas y con componentes espaciales relevantes. Existen metodologías heurísticas que en contextos como los actuales, de sobre-abundancia de datos, permiten evidenciar sus coherencias, sin requerir necesariamente hipótesis o formulaciones previas para generar conocimiento. Se propone el uso combinado de (i) técnicas procedentes de la Inteligencia Artificial, como son las Redes Neuronales Artificiales (ANN) del tipo Mapa Auto-organizado (SOM), que han demostrado ser muy eficaces y robustas clasificando y caracterizando perfiles en los datos; integradas con (ii) técnicas de Machine Learning como son los árboles de decisión, singularmente funcionales en la creación de modelos predictivos e interpretables para formular hipótesis explicativas de los perfiles anteriores a partir de otras variables diferenciadas. La investigación plantea combinar SIG, SOM y árboles de decisión para la construcción de modelos explicativos de los perfiles demográficos y sociales de Andalucía, a partir de datos de bajo coste sobre la dimensión residencial. Se verifica la viabilidad de tales modelos predictivos y su alto valor para la comprensión y para la toma de decisiones sobre tales territorios.

Palabras clave: árbol de decisión SIG, DSS, mapa auto-organizado.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abarca-Alvarez, F., Campos-Sánchez, F. S., & Osuna-Perez, F. (2015). Taxonomía de las inmigraciones turísticas de Andalucía basada en las cualidades de sus asentamientos urbanos. En Migraciones Contemporáneas, Territorio y Urbanismo.

Abarca-Alvarez, F., & Fernandez-Avidad, A. (2010). Generation of downtown planning-ordinances using self organizing maps. En 10th International Conference on Design and Decision Support Systems, DDSS 2010.

Abarca-Alvarez, F., & Osuna Pérez, F. (2013). Cartografías semánticas mediante redes neuronales: los mapas auto-organizados (SOM) como representación de patrones y campos. EGA. Revista de expresión gráfica arquitectónica, 18(22). http://doi.org/10.4995/ega.2013.1692

Astudillo, C. A., & John Oommen, B. (2011). Imposing tree-based topologies onto self organizing maps. Information Sciences, 181(18), 3798-3815. http://doi.org/10.1016/j.ins.2011.04.038

Astudillo, C. A., & Oommen, B. J. (2013). On achieving semi-supervised pattern recognition by utilizing tree-based SOMs. Pattern Recognition, 46(1), 293-304. http://doi.org/10.1016/j.patcog.2012.07.006

Ayedi, B. (1998). The design of spatial decision support systems in urban and regional planning. En Timmermans, H. Decesion Support Systems in Urban Planning. Routledge.

Bação, F., Lobo, V., & Painho, M. (1995). The Self-Organizing Map and it’s variants as tools for geodemographical data analysis: the case of Lisbon’s Metropolitan Area. Computers & Geosciences, 31(Goss), 155-163. http://doi.org/10.1016/j.cageo.2004.06.013

Bação, F., Lobo, V., & Painho, M. (2005). Self-organizing maps as substitutes for k-means clustering. Computational Science–ICCS 2005, 3516, 476-483. http://doi.org/10.1007/11428862_65

Basara, H. G., & Yuan, M. (2008). Community health assessment using self-organizing maps and geographic information systems. International journal of health geographics, 7, 67. http://doi.org/10.1186/1476-072X-7-67

Behnisch, M., & Ultsch, A. (2009). Urban data-mining: spatiotemporal exploration of multidimensional data. Building Research & Information, 37(5-6), 520-532. http://doi.org/10.1080/09613210903189343

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and Regression Trees. Chapman & Hall.

Buzai, G. D. (2007). Sistemas de Información Geográfica: Aspectos conceptuales desde la teoría de la Geografía. XI Conferencia Iberoamericana de Sistemas de Información Geográfica (XI CONFIBSIG). En Sociedad Iberoamericana de Sistemas de Información Geográfica, Luján, Argentina.

Buzai, G.D. (2015). Geografía global y Neogeografía. La dimensión espacial en la ciencia y la sociedad. Polígonos. Revista de Geografía, 27, 49-60.

Cao,L. S.; Y. Philip, C. Zhang, & H. Zhang (eds.) (2009). Data mining for business applications. New York.

Coe, R., & Merino, C. (2003). Magnitud del efecto: Una guía para investigadores y usuarios. Revista de Psicología, 21(1), 147-177.

Cohen, J. (1998). Statistical Power Analysis for the Behavioral Sciences (Vol. 2nd Editio). Lawrence Erlbaum Associates, Publishers. http://doi.org/10.1234/12345678

Delmelle, E. C., Thill, J. C., Furuseth, O., & Ludden, T. (2012). Trajectories of Multidimensional Neighbourhood Quality of Life Change. Urban Studies, 50(5), 923-941. http://doi.org/10.1177/0042098012458003

Demartines, P., & Blayo, F. (1992). Kohonen Self-Organizing Maps : Is the Normalization Necessary? Complex Systems, 6(2), 105-123.

Diappi, L., Bolchim, P., & Buscema, M. (2004). Improved Understanding of Urban Sprawl Using Neural Networks. En J. P. Van-Leeuwen & H. J. P. Timmermans (Eds.), Recent Advances in Design and Decision Support Systems in Architecture and Urban Planning (pp. 33-49). Politecn Milan, Dept Architecture and Planning, I-20133 Milan, Italy.: Springer.

Faggiano, L., de Zwart, D., García-Berthou, E., Lek, S., & Gevrey, M. (2010). Patterning ecological risk of pesticide contamination at the river basin scale. Science of the Total Environment, 408(11), 2319-2326. http://doi.org/10.1016/j.scitotenv.2010.02.002

Feng, S., & Xu, L. D. (1999). Decision support for fuzzy comprehensive evaluation of urban development. Fuzzy Sets and Systems, 105(1), 1-12. http://doi.org/10.1016/S0165-0114(97)00229-7

Goodchild, M. F. (2010). Twenty years of progress: GISscience in 2010. Journal of Spatial Information Science, 1, 3-20. http://doi.org/10.5311/JOSIS.2010.1.2

Gomes, H., Ribeiro, A. B., & Lobo, V. (2007). Location model for CCA-treated wood waste remediation units using GIS and clustering methods. Environmental Modelling and Software, 22(12), 1788-1795. http://doi.org/10.1016/j.envsoft.2007.03.004

Gómez-Carracedo, M. P., Andrade, J. M., Carrera, G. V. S. M., Aires-de-Sousa, J., Carlosena, A., & Prada, D. (2010). Combining Kohonen neural networks and variable selection by classification trees to cluster road soil samples. Chemometrics and Intelligent Laboratory Systems, 102(1), 20-34. http://doi.org/10.1016/j.chemolab.2010.03.002

Guo, D., Chen, J., MacEachren, A. M., & Liao, K. (2006). A Visualization System for Space-Time and Multivariate Patterns (VIS-STAMP). IEEE Transactions on Visualization and Computer Graphics, 12(6), 1461-1474. http://doi.org/10.1109/TVCG.2006.84

Hamaina, R., Leduc, T., & Moreau, G. (2012). Towards Urban Fabrics Characterization based on Buildings Footprints. En J. Gensel (Ed.), Bridging the Geographic Information Sciences (pp. 231-248). http://doi.org/10.1007/978-3-642-29063-3_13

Hatzichristos, T. (2004). Delineation of demographic regions with GIS and computational intelligence. Environment and Planning B: Planning and Design, 31(1), 39-49. http://doi.org/10.1068/b1296

Hernández Orallo, J., Ramírez Quintana, M. J., & Ferri Ramírez, C. (2004). Introducción a la minería de datos. Pearson Prentice Hall.

Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical Statistics, 15(July), 651-674. http://doi.org/10.1198/106186006X133933

Jarupathirun, S., & Zahedi, F. (2005). GIS as Spatial Decision Support Systems. En J. B. Pick (Ed.), Geographic information systems in business. Idea Group Pub.

Juanes Notario, P. (2014). La Geografía y la Estadística. Dos necesidades para entender Big Data. http://hdl.handle.net/10366/125197

Kaski, S., & Kohonen, T. (1996). Exploratory Data Analysis By The Self-Organizing Map: Structures Of Welfare And Poverty In The World (1996). Neural Networks in Financial Engineering. Proceedings of the Third International Conference on Neural Networks in the Capital Markets, 498-507. http://doi.org/10.1.1.53.3954

Kass, G. V. (1980). An Exploratory Technique for Investigating Large Quantities of Categorical Data. Applied Statistics, 29(2), 119-127. http://doi.org/10.2307/2986296

Kauko, T. (2005). Using the self-organising map to identify regularities across country-specific housing-market contexts. Environment and Planning B: Planning and Design, 32(1), 89-110. http://doi.org/10.1068/b3186

Keen, P. G. W. (1987). Decision support systems: The next decade. Decision Support Systems, 3(3), 253-265. http://doi.org/10.1016/0167-9236(87)90180-1

Kinaci, A. C., & Yucebas, S. C. (2015). Cost Reduction in Thyroid Diagnosis: A Hybrid Model with SOM and C4.5 Decision Trees. En International Conference on Neural Information Processing (pp. 440-448). http://doi.org/10.1007/11893257

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43(1), 59-69. http://doi.org/10.1007/BF00337288

Kohonen, T. (1990). The Self-Organizing Map. En Proceeding of the IEEE (Vol. 78, pp. 1464-1480). http://doi.org/10.1109/5.58325

Kohonen, T. (1995). Self-Organizing Maps. Springer. http://doi.org/10.1007/978-3-642-88163-3

Kohonen, T. (1998). The self-organizing map. Neurocomputing, 21(1-3), 1-6. http://doi.org/10.1016/S0925-2312(98)00030-7

Lin, W. (2008). Earthquake‐induced landslide hazard monitoring and assessment using SOM and PROMETHEE techniques: A case study at the Chiufenershan area in Central Taiwan. International Journal of Geographical Information Science, 22(9), 995-1012. http://doi.org/10.1080/13658810801914458

Luque Martínez, T. (2000). Técnicas de análisis de datos en investigación de mercados. (T. Luque Martínez, Ed.). Madrid: Pirámide.

Power, D. J., Sharda, R., & Burstein, F. (2015). Decision Support Systems. En C. L. Cooper (Ed.), Wiley Encyclopedia of Management (pp. 1-4). Chichester, UK: John Wiley & Sons, Ltd.

Quinlan, J. R. (1986). Induction of Decision Trees. Machine Learning, 1(1), 81-106. http://doi.org/10.1023/A:1022643204877

Ritter, H., & Kohonen, T. (1989). Self-organizing semantic maps. Biological Cybernetics, 61(4), 241-254. http://doi.org/10.1007/BF00203171

Salah, M., Trinder, J., & Shaker, A. (2009). Evaluation of the self‐organizing map classifier for building detection from lidar data and multispectral aerial images. Journal of Spatial Science, 54(2), 15-34. http://doi.org/10.1080/14498596.2009.9635176

Shanmuganathan, S., & Li, Y. (2016). An AI based approach to multiple census data analysis for feature selection. Journal of Intelligent & Fuzzy Systems, 31(2), 859-872. http://doi.org/10.3233/JIFS-169017

Silver, M. S. (2008). On the Design Features of Decision Support Systems : The Role of System Restrictiveness and Decisional Guidance. En F. Burstein & C. W. Holsapple (Eds.), Handbook on Decision Support Systems 2: Variations (pp. 261-291). Springer-Verlag Berlin Heidelberg.

Simmuteit, S., Schleif, F. M., Villmann, T., & Kostrzewa, M. (2009). Hierarchical PCA using tree-som for the identification of bacteria. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5629 LNCS, 272-280. http://doi.org/10.1007/978-3-642-02397-2_31

Skupin, A., & Agarwal, P. (2008). Introduction: What is a Self-Organizing Map? En P. Agarwal & A. Skupin (Eds.), Self-organising maps : applications in geographic information science (pp. 1-20). Wiley.

Skupin, A., & Esperbé, A. (2011). An alternative map of the United States based on an n-dimensional model of geographic space. Journal of Visual Languages and Computing, 22(4), 290-304. http://doi.org/10.1016/j.jvlc.2011.03.004

Skupin, A., & Hagelman, R. (2003). Attribute space visualization of demographic change. Proceedings of the eleventh ACM international symposium on Advances in geographic information systems - GIS 2003, 56-62. http://doi.org/10.1145/956676.956684

Skupin, A., & Hagelman, R. (2005). Visualizing Demographic Trajectories with Self Organizing Maps. GeoInformatica, 9(2), 159-179.

Spielman, S. E., & Thill, J.-C. (2008). Social area analysis, data mining, and GIS. Computers, Environment and Urban Systems, 32(2),110-122. http://doi.org/10.1016/j.compenvurbsys.2007.11.004

Strasser, H., & Weber, C. (1999). On the Asymptotic Theory of Permutation Statistics. Mathematical Methods of Statistics, 8, 220-250. http://doi.org/10.1007/s10551-011-0925-7

Streich, B. (2005). Stadtplanung in der Wissensgesellschaft Ein Handbuch. VS Verlag für Sozialwissenschaften.

Strobl, C., Malley, J., & Tutz, G. (2010). An Introduction to Recursive Partitioning: Rationale, Application and Characteristics of Classification and Regression Trees, Bagging and Random Forests. Psychol Methods, 14(4), 323-348. http://doi.org/10.1037/a0016973.An

Takatsuka, M. (2001). An application of the Self-Organizing Map and interactive 3-D visualization to geospatial data. Proceedings of the 6th International Conference on GeoComputation, 24-26.

Tayebi, M. H., Hashemi Tangestani, M., & Vincent, R. K. (2014). Alteration mineral mapping with ASTER data by integration of coded spectral ratio imaging and SOM neural network model. Turkish Journal of Earth Sciences, 23(6), 627-644. http://doi.org/10.3906/yer-1401-9

Tsai, C.-F., Lin, Y.-C., & Wang, Y.-T. (2009). Discovering Stock Trading Preferences By Self-Organizing Maps and Decision Trees. International Journal on Artificial Intelligence Tools, 18(4), 603-611. http://doi.org/10.1142/S0218213009000299

Villmann, T., Merényi, E., & Hammer, B. (2003). Neural maps in remote sensing image analysis. Neural Networks, 16(3-4), 389-403. http://doi.org/10.1016/S0893-6080(03)00021-2

Voumvoulakis, E. M., Gavoyiannis, A. E., & Hatziargyriou, N. D. (2006). Dynamic Security Assessment and Load Shedding Schemes Using Self Organized Maps and Decision Trees. En Hellenic Conference on Artificial Intelligence (pp. 1-7).

Wasserstein, R. L., & Lazar, N. A. (2016). The ASA’s statement on p-values: context, process, and purpose. The American Statistician, 1305(April), 00-00. http://doi.org/10.1080/00031305.2016.1154108

Weiss, S. M., & Indurkhya, N. (1998). Predictive Data Mining: A Practical Guide.

Witten, I. H., Frank, E., & Hall, M. a. (2011). Data Mining Practical Machine Learning Tools and Techniques. Data Mining (Third Edit, Vol. 277). Elsevier. http://doi.org/10.1002/1521-3773(20010316)40:6<9823::AID-ANIE9823>3.3.CO;2-C

Wu, P. K., & Hsiao, T. C. (2015). Factor Knowledge Mining Using the Techniques of AI Neural Networks and Self-Organizing Map. International Journal of Distributed Sensor Networks, 2015. http://doi.org/10.1155/2015/412418

Yan, J., & Thill, J.-C. (2009). Visual data mining in spatial interaction analysis with self-organizing maps. Environment and Planning B: Planning and Design, 36(3), 466-486. http://doi.org/10.1068/b34019

Yang, C., Guo, R., Wu, Z., Zhou, K., & Yue, Q. (2014). Spatial extraction model for soil environmental quality of anomalous areas in a geographic scale. Environmental Science and Pollution Research, 21(4), 2697-2705. http://doi.org/10.1007/s11356-013-2200-1

Yang, H., Hu, Y., qi Deng, F., Tian, X., & Li, B. (2004). Fuzzy SOFM-GIS space cluster model and its application analysis. 2004-8th International Conference on Control, Automation, Robotics and Vision-Icarcv 1, (December), 6-9.

Yang, Z. R., & Chou, K.-C. (2003). Mining biological data using self-organizing map. J. Chem. Inf. Comput. Sci., 43(6), 1748-1753.

Yao, Z., Holmbom, A. H., Eklund, T., & Back, B. (2010). Combining unsupervised and supervised data mining techniques for conducting customer portfolio analysis. En Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 6171 LNAI, pp. 292-307). http://doi.org/10.1007/978-3-642-14400-4_23

Yeh, A. G.-O. (2005). Urban planning and GIS. En: Longley, P.A.; Goodchild, M.F.; Maguire, D.J & Rhind, D.W. Geographical Information Systems: Principles, Techniques, Management and Applications. En 877-888. Recuperado a partir de http://www.geos.ed.ac.uk/~gisteac/gis_book_abridged/files/ch62.pdf

Zhang, J., Shi, H., & Zhang, Y. (2009). Self-organizing map methodology and google maps services for geographical epidemiology mapping. DICTA 2009 - Digital Image Computing: Techniques and Applications, 229-235. http://doi.org/10.1109/DICTA.2009.46
Publicado
2017-11-24
Estadísticas
Resumen visto = 292 veces
PDF descargado = 204 veces
Cómo citar
Abarca-Alvarez, F., Campos-Sánchez, F., & Reinoso-Bellido, R. (2017). Metodología de ayuda a la decisión mediante SIG e Inteligencia Artificial: aplicación en la caracterización demográfica de Andalucía a partir de su residencia. Estoa. Revista De La Facultad De Arquitectura Y Urbanismo De La Universidad De Cuenca, 6(11), 33-51. Recuperado a partir de https://publicaciones.ucuenca.edu.ec/ojs/index.php/estoa/article/view/1433