Reciprocal style and information transfer between historical Istanbul Pervititch Maps and satellite views using machine learning

Authors

DOI:

https://doi.org/10.18537/est.v011.n022.a06

Keywords:

Istanbul Pervititch Maps, artificial intelligence, machine learning, semantic segmentation, CycleGAN

Abstract

Historical maps contain significant data on the cultural, social, and urban character of cities. However, most historical maps utilize specific notation methods that differ from those commonly used today and converting these maps to more recent formats can be highly labor-intensive. This study is intended to demonstrate how a machine learning (ML) technique can be used to transform old maps of Istanbul into spatial data that simulates modern satellite views (SVs) through a reciprocal map conversion framework. With this aim, the Istanbul Pervititch Maps (IPMs) made by Jacques Pervititch in 1922-1945 and current SVs were used to test and evaluate the proposed framework. The study consists of a style and information transfer in two stages: (i) from IPMs to SVs, and (ii) from SVs to IPMs using CycleGAN (a type of generative adversarial network). The initial results indicate that the proposed framework can transfer attributes such as green areas, construction techniques/materials, and labels/tags.

Downloads

Download data is not yet available.

Author Biographies

Sema Alaçam, Istanbul Technical University

Department of Architecture, Istanbul Technical University, Istanbul, Turkey

Ilker Karadag, Manisa Celal Bayar University

Department of Architecture, Manisa Celal Bayar University, Manisa, Turkey

Orkan Zeynel Güzelci, University of Porto

Faculty of Architecture + DFL/CEAU, University of Porto, Porto, Portugal

References

Andrade, H. J., & Fernandes, B. J. (2020). Synthesis of Satellite-Like Urban Images from Historical Maps Using Conditional GAN. IEEE Geoscience and Remote Sensing Letters, 1–4. https://doi.org/10.1109/LGRS.2020.3023170

Archnet. (2021). Insurance Maps of Turkey and Istanbul. https://archnet.org/collections/1569/publications/10288

Balci, O. Terzi, Ş. B., & Balaban, Ö. (2020). Map generation & manipulation with generative adversarial networks. JCoDe: Journal of Computational Design, 1(3), 95–114.

Bromberg, K. D., & Bertness, M. D. (2005). Reconstructing New England salt marsh losses using historical maps. Estuaries, 28(6), 823–832. https://doi.org/10.1007/BF02696012

Chiang, Y. Y., Duan, W., Leyk, S., Uhl, J. H., & Knoblock, C. A. (2020). Using historical maps in scientific studies. Springer. https://doi.org/10.1007/978-3-319-66908-3

Ciski, M., & Ogryzek, M. (2018). Differences in the Mapping of the Southern Coastline of the Baltic Sea on Historical Maps, in the XVI-XX Centuries. Proceedings of the 2018 Baltic Geodetic Congress (BGC Geomatics) (pp. 154–158). IEEE. https://doi.org/10.1109/BGC-Geomatics.2018.00035

Çınaryılmaz, N. E., & Ar, B. (2020). San Michele Church of Genoese Galata (Pera): Historic records and material evidence on its chronology. A|Z ITU Journal of the Faculty of Architecture, 17(2), 15–29. https://doi.org/10.5505/itujfa.2020.37108

Crommelinck, S., Bennett, R., Gerke, M., Nex, F., Yang, M. Y., & Vosselman, G. (2016). Review of automatic feature extraction from high-resolution optical sensor data for UAV-based cadastral mapping. Remote Sensing, 8(8), 689. https://doi.org/10.3390/rs8080689

Dağdelen, İ. (2006). Alman Mavileri, 1913–1914: I. Dünya Savaşı Öncesi İstanbul Haritaları [German Blues, 1913-1914: İstanbul Maps Before World War I]. İstanbul Büyükşehir Belediyesi Kütüphane ve Müzeler Müdürlüğü.

Duan, W., Chiang, Y. Y., Leyk, S., Uhl, J. H., & Knoblock, C. A. (2020). Automatic alignment of contemporary vector data and georeferenced historical maps using reinforcement learning. International Journal of Geographical Information Science, 34(4), 824–849. https://doi.org/10.1080/13658816.2019.1698742

Fuchs, R., Verburg, P. H., Clevers, J. G., & Herold, M. (2015). The potential of old maps and encyclopaedias for reconstructing historic European land cover/use change. Applied Geography, 59, 43–55. https://doi.org/10.1016/j.apgeog.2015.02.013

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. NIPS'14: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2 (pp. 2672–2680). MIT Press. https://doi.org/10.5555/2969033.2969125

Haase, D., Walz, U., Neubert, M., & Rosenberg, M. (2007). Changes to Central European landscapes—analysing historical maps to approach current environmental issues, examples from Saxony, Central Germany. Land use policy, 24(1), 248–263. https://doi.org/10.1016/j.landusepol.2005.09.003

Heitzler, M., & Hurni, L. (2020). Cartographic reconstruction of building footprints from historical maps: A study on the Swiss Siegfried map. Transactions in GIS, 24(2), 442–461. https://doi.org/10.1111/tgis.12610

Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2017). Image-to-Image Translation with Conditional Adversarial Networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 5967–5976). IEEE. https://doi.org/10.1109/CVPR.2017.632

Istanbul Metropolitan Municipality - Atatürk Library Digital Archive and E-Sources. (2021). Jacques Pervititch. https://katalog.ibb.gov.tr/yordambt/yordam.php?aTumu=pervititch

Istanbul Metropolitan Municipality - Directorate of Geographic Information Systems. (2021). Istanbul Metropolitan Municipality Application of City Map. https://sehirharitasi.ibb.gov.tr/

Istanbul Urban Database. (2021). IUDB. http://www.istanbulurbandatabase.com/

Kang, Y., Gao, S., & Roth, R. E. (2019). Transferring multiscale map styles using generative adversarial networks. International Journal of Cartography, 5(2-3), 115–141. https://doi.org/10.1080/23729333.2019.1615729

Li, Z. (2019). Generating Historical Maps from Online Maps. SIGSPATIAL'19: Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (pp. 610–611). Association for Computing Machinery. https://doi.org/10.1145/3347146.3363463

Müller-Wiener, W. (2001). İstanbul’un Tarihsel Topografyası [Historical Topography of Istanbul]. Yapı Kredi Yayınları.

Pervititch, J. (2000). Jacques Pervititch Sigorta Haritalarında İstanbul [İstanbul in the Insurance Maps of Jacques Pervititch]. Tarih Vakfı Yurt Yayınları.

Salt Research. (2021). Jacques Pervititch. https://archives.saltresearch.org/handle/123456789/1824

Sen, A. (2020). Comparison of Past and Present Maps of Istanbul Historic Peninsula in GIS, Based on the Insurance Maps of Jacques Pervititch. e-Perimetron, 15(3), 183–198.

Turan N. (2011) Towards an Ecological Urbanism for Istanbul. In: A. Sorensen, & J. Okata (Eds.), Megacities: Urban Form, Governance, and Sustainability (pp. 223–243). Springer. https://doi.org/10.1007/978-4-431-99267-7_10

Turgut, H. (2021). Istanbul: The city as an urban palimpsest. Cities, 112, 103131. https://doi.org/10.1016/j.cities.2021.103131

Uhl, J. H., Leyk, S., Chiang, Y. Y., Duan, W., & Knoblock, C. A. (2019). Automated extraction of human settlement patterns from historical topographic map series using weakly supervised convolutional neural networks. IEEE Access, 8, 6978–6996. https://doi.org/10.1109/ACCESS.2019.2963213

Wang, S., Mu, X., He, H., Yang, D., & Zhao, P. (2020). Feature transfer based adversarial domain adaptation method for cross-domain road extraction. Geocarto International. https://doi.org/10.1080/10106049.2020.1753819

Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. Proceedings of the IEEE International Conference on Computer Vision (ICCV) (pp. 2242–2251). IEEE. https://doi.org/10.1109/ICCV.2017.244

Published

2022-07-25

How to Cite

Alaçam, S., Karadag, I., & Güzelci, O. Z. (2022). Reciprocal style and information transfer between historical Istanbul Pervititch Maps and satellite views using machine learning. Estoa. Journal of the Faculty of Architecture and Urbanism, 11(22). https://doi.org/10.18537/est.v011.n022.a06