Impact of heat on the deterioration of facades of the industrial heritage of the Peruvian Sierra

Authors

DOI:

https://doi.org/10.18537/est.v015.n029.a05

Keywords:

architectural heritage, thermal sensation, heat impact, facades, climate variability

Abstract

Urban heat and environmental pollution contribute to the deterioration of architectural heritage. Therefore, this research aims to analyze the impact of climatic, social, and environmental urban variables on heritage façade materials in three phases: identification of damage indexes based on materiality, observational flow analysis, and analysis of climate variability and wind chill using a thermographic camera and hygrometer. The results show that wood and ignimbrite are the materials most affected by heat and pedestrian behavior influences pedestrian traffic, choosing alternative routes to avoid discomfort caused by wind chill. This study aims to contribute to material analysis and develop conservation strategies for these types of heritage façades, addressing current environmental challenges and ensuring their durability over time. 

Downloads

Download data is not yet available.

References

Administración Nacional Oceánica y Atmosférica. (s.f.). Herramientas de seguridad térmica. https://www.weather.gov/safety/heat-tools

Aguilar, E. (2021). Análisis de la distribución e intensidad de las Islas de Calor Urbanas superficiales diurnas (icus) en el Cantón Manta, Manabí y su relación con la vegetación local y otras vaherrriables geográficas. https://diposit.ub.edu/dspace/handle/2445/180526

Alarcón, A. (2020). Mejora de la eficiencia energética de los edificios y reducción de la “isla de calor” en las ciudades del futuro. https://riunet.upv.es/handle/10251/160366

Barrelas, J., Silva, A., de Brito, J. y Tadeu, A. (2024). Influence of temperature increase and precipitation decrease on the degradation evolution of rendered façades in service conditions. Journal of Building Engineering, 94. https://doi.org/10.1016/j.jobe.2024.109843

Candanedo, M. y Villarreal, D. (2020). Efecto de las islas de calor urbano en las principales vías de la Ciudad de Panamá. https://revistas.utp.ac.pa/index.php/id-tecnologico/article/view/2829

Falcão Socoloski, R., Bersch, J. D., Guerra, M. & Borges Masuero, A. (2023). The influence of temperature and rain moisture in mortar facades obtained through hygrothermal simulation. Construction and Building Materials, 370. https://doi.org/10.1016/j.conbuildmat.2023.130587

Gunawardena, K., Kershaw, T. & Steemers, K. (2019). Simulation pathway for estimating heat island influence on urban/suburban building space-conditioning loads and response to facade material changes. Building and Environment, 150, 195–205. https://doi.org/10.1016/j.buildenv.2019.01.006

Herrera-Sosa, L. C., Villena-Montalvo, E. E. y Rodriguez-Neira, K. R. (2020). Evaluación del desempeño térmico del sillar (ignimbrita) de Arequipa, Perú. Revista de Arquitectura, 22(1), 152–163. https://doi.org/10.14718/revarq.2020.2261

Instituto Nacional de la Infraestructura Física Educativa. (2022). Normas y especificaciones para estudios, proyectos, construcción e instalaciones (1st ed., Vol. 3). https://www.academia.edu/125775965/VOLUMEN_3_TOMO_I_Diseno_arquitectonico

Jang, S., Bae, J. & Kim, Y. J. (2024). Street-level urban heat island mitigation: Assessing the cooling effect of green infrastructure using urban IoT sensor big data. Sustainable Cities and Society, 100. https://doi.org/10.1016/j.scs.2023.105007

Mendoza, M. y Aguillón, J. (2021). Influencia del color en la percepción térmica del diseño arquitectónico. https://www.redalyc.org/articulo.oa?id=477966601014

Ornam, K., Wonorahardjo, S. & Triyadi, S. (2023). Several facade types for mitigating urban heat island intensity. Building and Environment, 111031. https://doi.org/10.1016/j.buildenv.2023.111031

Palme, M., Clemente, C., Cellurale, M., Carrasco, C. & Salvati, A. (2019). Mitigation strategies of the urban heat island intensity in Mediterranean climates: Simulation studies in Rome (Italy) and Valparaiso (Chile). IOP Conference Series: Earth and Environmental Science, 323(1). https://doi.org/10.1088/1755-1315/323/1/012025

Rajagopal, P., Priya, R. S. & Senthil, R. (2023). A review of recent developments in the impact of environmental measures on urban heat island. In Sustainable Cities and Society, 88. https://doi.org/10.1016/j.scs.2022.104279

Ravelo, G. (2011). Influencia de los elementos climáticos en el deterioro de las fachadas de edificaciones del barrio Colón. https://www.redalyc.org/articulo.oa?id=376839863003

Resende, M. M., Gambare, E. B., Silva, L. A., Cordeiro, Y. de S., Almeida, E. & Salvador, R. P. (2022). Infrared thermal imaging to inspect pathologies on façades of historical buildings: A case study on the Municipal Market of São Paulo, Brazil. Case Studies in Construction Materials, 16. https://doi.org/10.1016/j.cscm.2022.e01122

Servicio Nacional de Meteorología e Hidrología del Perú. (2024). Pronóstico del clima - Arequipa. https://www.senamhi.gob.pe/main.php?dp=arequipa&p=pronostico-detalle

Sullón, M. (2017). Determinación y evaluación de las patologías del cerco perimétrico de la Institución Educativa 14013, Señor de la Divina Misericordia, distrito 26 de octubre, provincia de Piura, departamento de Piura, febrero 2017. https://repositorio.uladech.edu.pe/handle/20.500.13032/2078

Tabatabaei, S. S. & Fayaz, R. (2023). The effect of facade materials and coatings on urban heat island mitigation and outdoor thermal comfort in hot semi-arid climate. Building and Environment, 243. https://doi.org/10.1016/j.buildenv.2023.110701

Wonorahardjo, S., Sutjahja, I. M., Mardiyati, Y., Andoni, H., Achsani, R. A., Steven, S., Thomas, D., Tunçbilek, E., Arıcı, M., Rahmah, N. & Tedja, S. (2022). Effect of different building façade systems on thermal comfort and urban heat island phenomenon: An experimental analysis. Building and Environment, 217. https://doi.org/10.1016/j.buildenv.2022.109063

Xi, C., Ren, C., Zhang, R., Wang, J., Feng, Z., Haghighat, F. & Cao, S. J. (2023). Nature-based solution for urban traffic heat mitigation facing carbon neutrality: sustainable design of roadside green belts. Applied Energy, 343. https://doi.org/10.1016/j.apenergy.2023.121197

Xiang, Y., Cen, Q., Peng, C., Huang, C., Wu, C., Teng, M. & Zhou, Z. (2023). Surface urban heat island mitigation network construction utilizing source-sink theory and local climate zones. Building and Environment, 243. https://doi.org/10.1016/j.buildenv.2023.110717

Zeballos, C. (2021). Atlas Ambiental de Arequipa (Vol. 1). Universidad Católica de Santa María. https://isbn.bnp.gob.pe/catalogo.php?mode=detalle&nt=150340

Zhuo, S., Zhou, W., Fang, P. Ye, J., Luo, H., Li, H., Wu, C., Chen, W. & Liu, Y. (2024). Cost-effective pearlescent pigments with high near-infrared reflectance and outstanding energy-saving ability for mitigating urban heat island effect. Applied Energy, 353. https://doi.org/10.1016/j.apenergy.2023.122051

Published

2026-01-26

How to Cite

Lajo Cuno, C., Quispe Zapata, R., Delgado Meneses, P. C., & Ibárcena Ibárcena, V. (2026). Impact of heat on the deterioration of facades of the industrial heritage of the Peruvian Sierra. Estoa. Journal of the Faculty of Architecture and Urbanism, 15(29), 66–80. https://doi.org/10.18537/est.v015.n029.a05