Systematic review of concrete and steel life cycle in Latin American social housing

Authors

  • Germán Vélez-Torres Catholic University of Cuenca
  • Karla Alvarado-Palacios Higher Technological Institute of Austro https://orcid.org/0000-0002-1004-124X

DOI:

https://doi.org/10.18537/est.v015.n029.a02

Keywords:

life cycle assessment, sustainability, social housing, concrete, steel

Abstract

This article presents a systematic review of life cycle assessment (LCA) applied to concrete and steel used in social housing in Latin America. A search in Scopus, ScienceDirect and Web of Science yielded 48 studies meeting PRISMA criteria. The analysis includes environmental impacts, applied methodologies, and common limitations. Results show a high carbon footprint for both materials, with regional differences. Improvement opportunities include the use of supplementary cementitious materials, recycled steel, and circular design strategies. Finally, policy recommendations are proposed, focusing on LCA standardization, economic incentives, and data governance. The study concludes that technically feasible solutions exist, but their implementation depends on regulatory and financial changes.

Downloads

Download data is not yet available.

References

Al Asmari, A. F., Bashir, M. I., Farooq, F. & Asif, U. (2025). Investigating the effect of locally available volcanic ash on mechanical and microstructure properties of concrete. Revista de Avances en Materiales, 64(1). https://doi.org/10.1515/rams-2024-0085

Bianchi, P. F., Yepes, V., Vitorio, P. C. & Kripka, M. (2021). Study of alternatives for the design of sustainable low-income housing in Brazil. Sustainability, 13(9), 4757. https://doi.org/10.3390/su13094757

Caldas, L. R., Lira, J. S. d. M. M., Melo, P. C. d. & Sposto, R. M. (2017). Life cycle carbon emissions inventory of brick masonry and light steel framing houses in Brasilia: Proposal of design guidelines for low-carbon social housing. Ambient. Construido, 17(3), 71–85. https://doi.org/10.1590/s1678-86212017000300163

CADIS. (2019). Software Mexicaniuh. http://mexicaniuh.net/CadisBootstrap/mexicaniuh.php

Cervantes Puma, G. C., Salles, A., Turk, J., Ungureanu, V. & Bragança, L. (2024). Utilisation of reused steel and slag: Analysing the circular economy benefits through three case studies. Buildings, 14(4), 979. https://doi.org/10.3390/buildings14040979

Ciroth, A., Di Noi, C., Burhan, S. S. & Srocka, M. (2020). LCA database creation: Current challenges and the way forward. Greendelta.com. https://www.greendelta.com/wp-content/uploads/2020/09/LCA-database-creation.pdf

Colorado, H. A., Muñoz, A. & Neves Monteiro, S. (2022). Circular economy of construction and demolition waste: A case study of Colombia. Sustainability, 14(12), 7225. https://doi.org/10.3390/su14127225

Contreras, M., Teixeira, S., Lucas, M., Lima, L., Cardoso, D., Da Silva, G., Gregório, G., De Souza, A. & Dos Santos, A. (2016). Recycling of construction and demolition waste for producing new construction material (Brazil case-study). Construction and Building Materials, 123, 594–600. https://doi.org/10.1016/j.conbuildmat.2016.07.044

Córdoba, G., Paulo, C. I. y Irassara, E. F. (2023). Metodología para la evaluación del impacto ambiental del hormigón elaborado aplicado a la región metropolitana de Buenos Aires. Revista Hormigón, 64.

CYPE. (2017). Home Page of CYPELATAM. http://www.cypelatam.com/

De Lara, B. L. E. & Penteado, C. S. G. (2024). Environmental assessment of construction waste prevention: A case study in a social housing project in Southeast Brazil. Cleaner Waste Systems, 8, 100145. https://doi.org/10.1016/j.clwas.2024.100145

Ecoinvent Centre. (2014). Home Page of Ecoinvent. https://www.ecoinvent.org/database/introduction-to-ecoinvent-3/introduction-to-ecoinvent-version-3.html

García-Gusano, D., Dufour, J. & Iribarren, D. (2015). Life Cycle Assessment of applying CO₂ post-combustion capture to the Spanish cement production. The International Journal of Life Cycle Assessment, 20(5), 674–684. https://doi.org/10.1007/s11367-015-0861-1

Gámez-García, D. C., Saldaña-Márquez, H., Gómez-Soberón, J. M., Arredondo-Rea, S. P., Gómez-Soberón, M. C. & Corral-Higuera, R. (2019). Environmental challenges in the residential sector: Life cycle assessment of Mexican social housing. Energies, 12(14), 2837. https://doi.org/10.3390/en12142837

Guo, Y., Luo, L., Liu, T., Hao, L., Li, Y., Liu, P. & Zhu, T. (2023). A review of low-carbon technologies and projects for the global cement industry. Journal of Environmental Sciences, 136, 682–697. https://doi.org/10.1016/j.jes.2023.02.013

Hossain, M. U., Cai, R., Ng, S. T., Xuan, D. y Ye, H. (2020). Sustainable natural pozzolana concrete – A comparative study on its environmental performance against concretes with other industrial by-products. Construction and Building Materials, 258, 121429. https://doi.org/10.1016/j.conbuildmat.2020.121429

ISO 14044. (2006). Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.

Jiménez, A. y Freire, J. (2024). Estudio de la ceniza proveniente del volcán Sangay sedimentada en el río Volcán para su implementación en la industria del cemento [Tesis de grado, Escuela Politécnica de Chimborazo]. https://dspace.espoch.edu.ec/bitstream/123456789/23424/1/53T0108.pdf

Kim, J., Park, S., Park, J., Lee, H., Choi, Y., Lee, J. & Jang, H. (2022). Decarbonizing the iron and steel industry: A systematic review of sociotechnical systems, technological innovations, and policy options. Energy Research y Social Science, 89, 102565. https://doi.org/10.1016/j.erss.2022.102565

Küpfer, C., Bastien-Masse, M. & Fivet, C. (2022). Reuse of concrete components in new construction projects: Critical review of 77 circular precedents. Journal of Cleaner Production, 383, 135235. https://doi.org/10.1016/j.jclepro.2022.135235

López Gómez, M. & Cultrone, G. (2025). Study of the mineralogical and textural properties of bricks with volcanic ash temper. Applied Clay Science, 266, 107690. https://doi.org/10.1016/j.clay.2024.107690

Marinković, S., Dragaš, J., Ignjatović, I. & Tošić, N. (2017). Environmental assessment of green concretes for structural use. Journal of Cleaner Production, 154, 633–649. https://doi.org/10.1016/j.jclepro.2017.03.218

Maués, L. M., Beltrão, N. & Silva, I. (2021). GHG emissions assessment of civil construction waste disposal and transportation process in the eastern Amazon. Sustainability, 13(10), 5666. https://doi.org/10.3390/su13105666

Ministerio de Desarrollo Urbano y Vivienda. (MIDUVI). (2024, 12 de diciembre). Déficit Habitacional Nacional. https://www.habitatyvivienda.gob.ec/deficit-habitacional-nacional/

Mushtaq, S. F., Memon, M. A., Javed, M. I. & Memon, A. S. (2022). Effect of Bentonite as Partial Replacement of Cement on Residual Properties of Concrete Exposed to Elevated Temperatures. Sustainability, 14(18), 11580. https://doi.org/10.3390/su141811580

Nazeer, M., Kapoor, K. & Singh, S. P. (2023). Strength, durability and microstructural investigations on pervious concrete made with fly ash and silica fume as supplementary cementitious materials. Journal of Building Engineering, 69, 106275. https://doi.org/10.1016/j.jobe.2023.106275

Petroche, D. M. & Ramirez, A. D. (2022). The environmental profile of clinker, cement, and concrete: A life cycle perspective study based on Ecuadorian data. Buildings, 12(3), 311. https://doi.org/10.3390/buildings12030311

Rondón Toro, E., Szantó Narea, M., Pacheco, J. F., Contreras, E. y Gálvez, A. (2016). Guía general para la gestión de residuos sólidos domiciliarios. CEPAL. https://repositorio.cepal.org/server/api/core/bitstreams/a5f80abc-8063-4e19-b871-e954f1db5bf6/content

Salzer, C., Wallbaum, H., Ostermeyer, Y. & Kono, J. (2017). Environmental performance of social housing in emerging economies: Life cycle assessment of conventional and alternative construction methods in the Philippines. The International Journal of Life Cycle Assessment, 22(11), 1785–1801. https://doi.org/10.1007/s11367-017-1362-3

Scrivener, K., Martirena, F., Bishnoi, S. & Maity, S. (2017). Calcined clay limestone cements (LC3). Cement and Concrete Research, 114, 49–56. https://doi.org/10.1016/j.cemconres.2017.08.017

Silva, J., Almeida, M. & Bragança, L. (2023). Integration of life cycle thinking in building renovation: Comparative analysis between concrete and steel systems. Sustainability, 15(2), 934. https://doi.org/10.3390/su15020934

Sparrevik, M., de Boer, L., Michelsen, O., Skaar, C., Knudson, H. & Fet, A. M. (2021). Circular economy in the construction sector: Advancing environmental performance through systemic and holistic thinking. Environmental Systems and Decisions, 41(3), 392–400. https://doi.org/10.1007/s10669-021-09803-5

Tello-Ayala, K., Salazar, R., Torres, C. & Rodríguez, D. (2023). Comparative analysis of the sustainability and seismic performance of a social interest house using RC moment frames and bahareque as structural systems. Frontiers in Built Environment, 9, 1150826. https://doi.org/10.3389/fbuil.2023.1150826

U.S. Department of Energy [DOE]. (2024). Embodied Carbon Reduction in New Construction Reference Guide (DOE/EE-2812).

Vázquez-Rowe, I., Ziegler-Rodriguez, K., Laso, J., Quispe, I., Aldaco, R. & Kahhat, R. (2019). Production of cement in Peru: Understanding carbon-related environmental impacts and their policy implications. Resources, Conservation and Recycling, 142, 283–292. https://doi.org/10.1016/j.resconrec.2018.12.003

Zabalza Bribián, I., Aranda Usón, A. & Scarpellini, S. (2009). Life cycle assessment in buildings: State-of-the-art and simplified LCA methodology as a complement for building certification. Building and Environment, 44(12), 2510–2520. https://doi.org/10.1016/j.buildenv.2009.05.001

Published

2026-01-26

How to Cite

Vélez-Torres, G., & Alvarado-Palacios, K. (2026). Systematic review of concrete and steel life cycle in Latin American social housing. Estoa. Journal of the Faculty of Architecture and Urbanism, 15(29), 27–38. https://doi.org/10.18537/est.v015.n029.a02