Systematic review of concrete and steel life cycle in Latin American social housing
DOI:
https://doi.org/10.18537/est.v015.n029.a02Keywords:
life cycle assessment, sustainability, social housing, concrete, steelAbstract
This article presents a systematic review of life cycle assessment (LCA) applied to concrete and steel used in social housing in Latin America. A search in Scopus, ScienceDirect and Web of Science yielded 48 studies meeting PRISMA criteria. The analysis includes environmental impacts, applied methodologies, and common limitations. Results show a high carbon footprint for both materials, with regional differences. Improvement opportunities include the use of supplementary cementitious materials, recycled steel, and circular design strategies. Finally, policy recommendations are proposed, focusing on LCA standardization, economic incentives, and data governance. The study concludes that technically feasible solutions exist, but their implementation depends on regulatory and financial changes.
Downloads
References
Al Asmari, A. F., Bashir, M. I., Farooq, F. & Asif, U. (2025). Investigating the effect of locally available volcanic ash on mechanical and microstructure properties of concrete. Revista de Avances en Materiales, 64(1). https://doi.org/10.1515/rams-2024-0085
Bianchi, P. F., Yepes, V., Vitorio, P. C. & Kripka, M. (2021). Study of alternatives for the design of sustainable low-income housing in Brazil. Sustainability, 13(9), 4757. https://doi.org/10.3390/su13094757
Caldas, L. R., Lira, J. S. d. M. M., Melo, P. C. d. & Sposto, R. M. (2017). Life cycle carbon emissions inventory of brick masonry and light steel framing houses in Brasilia: Proposal of design guidelines for low-carbon social housing. Ambient. Construido, 17(3), 71–85. https://doi.org/10.1590/s1678-86212017000300163
CADIS. (2019). Software Mexicaniuh. http://mexicaniuh.net/CadisBootstrap/mexicaniuh.php
Cervantes Puma, G. C., Salles, A., Turk, J., Ungureanu, V. & Bragança, L. (2024). Utilisation of reused steel and slag: Analysing the circular economy benefits through three case studies. Buildings, 14(4), 979. https://doi.org/10.3390/buildings14040979
Ciroth, A., Di Noi, C., Burhan, S. S. & Srocka, M. (2020). LCA database creation: Current challenges and the way forward. Greendelta.com. https://www.greendelta.com/wp-content/uploads/2020/09/LCA-database-creation.pdf
Colorado, H. A., Muñoz, A. & Neves Monteiro, S. (2022). Circular economy of construction and demolition waste: A case study of Colombia. Sustainability, 14(12), 7225. https://doi.org/10.3390/su14127225
Contreras, M., Teixeira, S., Lucas, M., Lima, L., Cardoso, D., Da Silva, G., Gregório, G., De Souza, A. & Dos Santos, A. (2016). Recycling of construction and demolition waste for producing new construction material (Brazil case-study). Construction and Building Materials, 123, 594–600. https://doi.org/10.1016/j.conbuildmat.2016.07.044
Córdoba, G., Paulo, C. I. y Irassara, E. F. (2023). Metodología para la evaluación del impacto ambiental del hormigón elaborado aplicado a la región metropolitana de Buenos Aires. Revista Hormigón, 64.
CYPE. (2017). Home Page of CYPELATAM. http://www.cypelatam.com/
De Lara, B. L. E. & Penteado, C. S. G. (2024). Environmental assessment of construction waste prevention: A case study in a social housing project in Southeast Brazil. Cleaner Waste Systems, 8, 100145. https://doi.org/10.1016/j.clwas.2024.100145
Ecoinvent Centre. (2014). Home Page of Ecoinvent. https://www.ecoinvent.org/database/introduction-to-ecoinvent-3/introduction-to-ecoinvent-version-3.html
García-Gusano, D., Dufour, J. & Iribarren, D. (2015). Life Cycle Assessment of applying CO₂ post-combustion capture to the Spanish cement production. The International Journal of Life Cycle Assessment, 20(5), 674–684. https://doi.org/10.1007/s11367-015-0861-1
Gámez-García, D. C., Saldaña-Márquez, H., Gómez-Soberón, J. M., Arredondo-Rea, S. P., Gómez-Soberón, M. C. & Corral-Higuera, R. (2019). Environmental challenges in the residential sector: Life cycle assessment of Mexican social housing. Energies, 12(14), 2837. https://doi.org/10.3390/en12142837
Guo, Y., Luo, L., Liu, T., Hao, L., Li, Y., Liu, P. & Zhu, T. (2023). A review of low-carbon technologies and projects for the global cement industry. Journal of Environmental Sciences, 136, 682–697. https://doi.org/10.1016/j.jes.2023.02.013
Hossain, M. U., Cai, R., Ng, S. T., Xuan, D. y Ye, H. (2020). Sustainable natural pozzolana concrete – A comparative study on its environmental performance against concretes with other industrial by-products. Construction and Building Materials, 258, 121429. https://doi.org/10.1016/j.conbuildmat.2020.121429
ISO 14044. (2006). Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
Jiménez, A. y Freire, J. (2024). Estudio de la ceniza proveniente del volcán Sangay sedimentada en el río Volcán para su implementación en la industria del cemento [Tesis de grado, Escuela Politécnica de Chimborazo]. https://dspace.espoch.edu.ec/bitstream/123456789/23424/1/53T0108.pdf
Kim, J., Park, S., Park, J., Lee, H., Choi, Y., Lee, J. & Jang, H. (2022). Decarbonizing the iron and steel industry: A systematic review of sociotechnical systems, technological innovations, and policy options. Energy Research y Social Science, 89, 102565. https://doi.org/10.1016/j.erss.2022.102565
Küpfer, C., Bastien-Masse, M. & Fivet, C. (2022). Reuse of concrete components in new construction projects: Critical review of 77 circular precedents. Journal of Cleaner Production, 383, 135235. https://doi.org/10.1016/j.jclepro.2022.135235
López Gómez, M. & Cultrone, G. (2025). Study of the mineralogical and textural properties of bricks with volcanic ash temper. Applied Clay Science, 266, 107690. https://doi.org/10.1016/j.clay.2024.107690
Marinković, S., Dragaš, J., Ignjatović, I. & Tošić, N. (2017). Environmental assessment of green concretes for structural use. Journal of Cleaner Production, 154, 633–649. https://doi.org/10.1016/j.jclepro.2017.03.218
Maués, L. M., Beltrão, N. & Silva, I. (2021). GHG emissions assessment of civil construction waste disposal and transportation process in the eastern Amazon. Sustainability, 13(10), 5666. https://doi.org/10.3390/su13105666
Ministerio de Desarrollo Urbano y Vivienda. (MIDUVI). (2024, 12 de diciembre). Déficit Habitacional Nacional. https://www.habitatyvivienda.gob.ec/deficit-habitacional-nacional/
Mushtaq, S. F., Memon, M. A., Javed, M. I. & Memon, A. S. (2022). Effect of Bentonite as Partial Replacement of Cement on Residual Properties of Concrete Exposed to Elevated Temperatures. Sustainability, 14(18), 11580. https://doi.org/10.3390/su141811580
Nazeer, M., Kapoor, K. & Singh, S. P. (2023). Strength, durability and microstructural investigations on pervious concrete made with fly ash and silica fume as supplementary cementitious materials. Journal of Building Engineering, 69, 106275. https://doi.org/10.1016/j.jobe.2023.106275
Petroche, D. M. & Ramirez, A. D. (2022). The environmental profile of clinker, cement, and concrete: A life cycle perspective study based on Ecuadorian data. Buildings, 12(3), 311. https://doi.org/10.3390/buildings12030311
Rondón Toro, E., Szantó Narea, M., Pacheco, J. F., Contreras, E. y Gálvez, A. (2016). Guía general para la gestión de residuos sólidos domiciliarios. CEPAL. https://repositorio.cepal.org/server/api/core/bitstreams/a5f80abc-8063-4e19-b871-e954f1db5bf6/content
Salzer, C., Wallbaum, H., Ostermeyer, Y. & Kono, J. (2017). Environmental performance of social housing in emerging economies: Life cycle assessment of conventional and alternative construction methods in the Philippines. The International Journal of Life Cycle Assessment, 22(11), 1785–1801. https://doi.org/10.1007/s11367-017-1362-3
Scrivener, K., Martirena, F., Bishnoi, S. & Maity, S. (2017). Calcined clay limestone cements (LC3). Cement and Concrete Research, 114, 49–56. https://doi.org/10.1016/j.cemconres.2017.08.017
Silva, J., Almeida, M. & Bragança, L. (2023). Integration of life cycle thinking in building renovation: Comparative analysis between concrete and steel systems. Sustainability, 15(2), 934. https://doi.org/10.3390/su15020934
Sparrevik, M., de Boer, L., Michelsen, O., Skaar, C., Knudson, H. & Fet, A. M. (2021). Circular economy in the construction sector: Advancing environmental performance through systemic and holistic thinking. Environmental Systems and Decisions, 41(3), 392–400. https://doi.org/10.1007/s10669-021-09803-5
Tello-Ayala, K., Salazar, R., Torres, C. & Rodríguez, D. (2023). Comparative analysis of the sustainability and seismic performance of a social interest house using RC moment frames and bahareque as structural systems. Frontiers in Built Environment, 9, 1150826. https://doi.org/10.3389/fbuil.2023.1150826
U.S. Department of Energy [DOE]. (2024). Embodied Carbon Reduction in New Construction Reference Guide (DOE/EE-2812).
Vázquez-Rowe, I., Ziegler-Rodriguez, K., Laso, J., Quispe, I., Aldaco, R. & Kahhat, R. (2019). Production of cement in Peru: Understanding carbon-related environmental impacts and their policy implications. Resources, Conservation and Recycling, 142, 283–292. https://doi.org/10.1016/j.resconrec.2018.12.003
Zabalza Bribián, I., Aranda Usón, A. & Scarpellini, S. (2009). Life cycle assessment in buildings: State-of-the-art and simplified LCA methodology as a complement for building certification. Building and Environment, 44(12), 2510–2520. https://doi.org/10.1016/j.buildenv.2009.05.001
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Estoa. Journal of the Faculty of Architecture and Urbanism

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The Journal declines any responsibility for possible conflicts derived from the authorship of the works that are published in it.
The University of Cuenca in Ecuador conserves the patrimonial rights (copyright) of the published works and will favor the reuse of the same ones, these can be: copy, use, diffuse, transmit and expose publicly.
Unless otherwise indicated, all contents of the electronic edition are distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.