Estimation of the risk of failure in the water supply as support to the planning and management of water resources
DOI:
https://doi.org/10.18537/mskn.03.02.06Keywords:
water resources, numerical modeling, stochastic scenarios, decision-making, management and planningAbstract
In this study numerical models and stochastic scenarios are used to verify if the water resource systems of the Paute River Basin under the given conditions of infrastructure (storage reservoirs) are capable of meeting the water demand in 30 years from today. The analysis revealed the need to implement a reservoir with a capacity of at least 21 Hm3 in the Tomebamba subbasin, whereas the Pindilig subbasin does not require any storage reservoir. In case the water supply during dry periods ceases below the water demand the implementation of water use restriction measures might be required. The results clearly show the usefulness of used approach and its capacity in generating alternatives in water supply and demand for future conditions. As such the method will be very helpful to decision-makers in defining the most appropriate policies for the planning and management of the water resources.
Downloads
Metrics
References
Akaike, H., 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control, AS19 (6), 716-723.
Alemu E.T., R.N. Palmer, A. Polebitski, B. Meaker, 2011. Decision support system for optimizing reservoir operations using ensemble streamflow predictions. J. Water Res. Pl.-ASCE, 237(1), 72-82.
Andreu, J., J. Capilla, E. Sanchís, 1996. AQUATOOL, a generalized decision-support system for water-resources planning and operational management. J. Hydrol., 177(3-4), 269-291.
Andreu, J., A. Solera, J. Paredes, 2003. Sistema de estimación de riesgos en la gestión de sequías. In: Jornadas sobre sistemas de ayuda a la decisión ante problemas hidrológicos e hidráulicos en tiempo real. CEDEX, Madrid, España.
Andreu, J., A. Solera, J. Capilla, J. Ferrer, 2010. SIMGES Simulation Model of Water Resource Management including Conjunctive Use. Version 3.02. User manual. Polytechnic University of Valencia, España, 100 pp. Descargado de http://www.upv.es/aquatool/docs/ManSIMGESI.pdf en septiembre 2012.
Diaz, G.E., T. Brown, 1997. AQUARIUS: A modeling system for river basin water allocation. General Technical Report RM-GTR-299, USDA Forest Service, Washington D.C., USA.
Dolling, O.R., 2001. Sistema de apoyo a la gestión integral de cuencas hidrográficas. Disertación Doctoral Ingeniero de Caminos, Canales y Puertos, Pontificia Universidad Católica de Chile, Santiago, Chile, 238 pp.
Huang, Y., Y.P. Li, X. Chen, A.M. Bao, M. Zhou, 2010. Simulation-based optimization method for water resources management in Tarim River Basin, China. Energ. Policy, 2, 1451-1460.
Hurvich, C.M., C.L. Tsai, 1989. Regression and time series model selection in small samples. Biometrika, 76(2), 297-307.
Hydrologic Engineering Center, 1998. HEC-5: Simulation of flood control and conservation systems, Version 8.0. Department of the Army Corps of Engineers, Davis, CA, USA. Descargado de http://www.hec.usace.army.mil/software/legacysoftware/hec5/hec5.htm en septiembre 2012.
Labadie, J.W., M.L. Baldo, R. Larson, 2000. MODSIM: Decision Support System for River Basin Management: Documentation and User Manual, Colorado State University and U.S. Bureau of Reclamation, Ft Collins, CO, USA.
Lund, J.R., J. Guzman, 1999. Some derived operating rules for reservoirs in series or in parallel. J. Water Res. Pl.-ASCE, 125(3), 143-153.
Ochoa, J.C., 2002. Modelo estocástico de redes neuronales para la síntesis de caudales aplicados a la gestión probabilística de sequías. Tesis Doctoral. Escuela Técnica Superior de Ingenieros de Caminos Canales y Puertos, Departamento de Ingeniería Hidráulica y Medio Ambiente, Universidad Politécnica de Valencia, Valencia, España, 205 pp.
Sánchez, S.T., J. Andreu, A. Solera, 2000. Gestión de recursos hídricos con decisiones basadas en estimación del riesgo. Publicaciones Universidad Politécnica de Valencia, Valencia, España, 158 pp.
SEI Stockholm Environment Institute, 2001. WEAP: Water Evaluation and Planning System. Stockholm Environment Institute. Descargado de http://www.weap21.org/ en septiembre 2012.
Simonovic, S.P., D. Savic, 1989. Intelligent Decision Support and Reservoir management and operations. J. Comput. Civ. Eng., 3(4), 367-385.
Solera, A., 2003. Herramientas y métodos para la ayuda a la decisión en la gestión sistemática de recursos hídricos. Aplicación a las cuencas de los ríos Tajo y Júcar. Tesis Doctoral. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Hidráulica y Medio Ambiente, Universidad Politécnica de Valencia, Valencia, España, 278 pp.
Sveinsson, O.G.B., J.D. Salas, W.L. Lane, D.K. Frevert, 2007. Stochastic analysis modeling and simulation (SAMS). User’s Manual. Version 2007. Computing Hydrology Laboratory, Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, USA, 123 pp.
Downloads
Published
How to Cite
Issue
Section
License
Copyright © Autors. Creative Commons Attribution 4.0 License. for any article submitted from 6 June 2017 onwards. For manuscripts submitted before, the CC BY 3.0 License was used.
You are free to:
Share — copy and redistribute the material in any medium or format |
Adapt — remix, transform, and build upon the material for any purpose, even commercially. |
Under the following conditions:
Attribution — You must give appropriate credit, provide a link to the licence, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licenser endorses you or your use. |
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the licence permits. |