“Soft Robotic”: Una nueva generación de robots

Autores/as

  • José Medina H Robotics Lab., Dpto. Ing. de Sistemas y Automática, Universidad Carlos III de Madrid, Madrid, España.
  • Paulina Vélez N Facultad de Informática y Electrónica, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador.

Resumen

RESUMEN

La necesidad de crear robots que puedan interactuar, de una forma más fácil y efectiva con el mundo real, ha traído consigo un creciente interés en el uso de nuevos materiales y morfologías robóticas no convencionales. Este artículo sirve de introducción al área de la robótica suave o “soft robotic”, como una alternativa segura, robusta y eficiente para la interacción física en entornos dinámicos y no estructurados. Además, plantea los desafíos que conlleva este cambio de paradigma desde diferentes puntos de vista.

Palabras clave: Robótica, robótica suave, robots bioinspirados, cuerpo inteligente.

ABSTRACT

The necessity to create robots that can interact in an easy and effective way with the real world brings an increasing interest to use new materials and unconventional morphologies of robotics. This paper serves as an introduction to the soft robotics field, as a safe, efficient and robust alternative to interact in a dynamic and unstructured environment. In addition, it raises the challenges of this paradigm shift from different points of view.

Keywords: Robotics, soft robotics, bioinspired robots, embodied intelligence.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Agency European Space, 2014. Space technology informs artificial heart development. MedicalXpress.

Aliev, A.E., 2009. Giant-stroke, superelastic carbon nanotube aerogel muscles. Science, 323, 1575-1578.

Amend, J., E. Brown, N. Rodenberg, H. Jaeger, 2012. A positive pressure universal gripper based on the Jamming of granular material. IEEE Transactions on Robotics, 28(2), 341-350.

Asaka, K., K. Oguro, 2000. Bending of polyelectrolyte membrane platinum composites by electric stimuli: Part II. Response kinetics. Journal of Electroanalytical Chemistry, 480, 186-198.

Bar-Cohen, Y., S. Sherrit, S-S. Lih, 2001. Characterization of the electromechanical properties of EAP materials. Proc. SPIE 4329, Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices.

Baughman, R., 1996. Conducting polymer artificial muscles. Synthetic Metals, 78(3), 339-353.

Baughman, R., C. Cui, A. Zakhidov, Z. Iqbal, J. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D. De Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz, 1999. Carbon nanotube actuators. Science, 284(5418), 1340-1344.

Bicchi, A., G. Tonietti, M. Bavaro, M. Piccigallo, 2005. Variable stiffness actuators for fast and safe motion control. In Robotics research. Springer Berlin Heidelberg, 527-536.

Bischoff, R., J. Kurth, G. Schreiber, R. Koeppe, A. Albu-Schaeffer, A. Beyer, O. Eiberger, S. Haddadin, A. Stemmer, G. Grunwald, G. Hirzinger, 2010. The KUKA-DLR Lightweight Robot arm - a new reference platform for robotics research and manufacturing. Robotics (ISR), 2010 41st International Symposium on and 2010 6th German Conference on Robotics (ROBOTIK), 1-8.

Capri, F., R. Kornbluh, G. Alici, 2011. Electroactive polymer actuators as artificial muscles: Are they ready for bioinspired applications? Bioinspiration & Biomimetics, 6(4).

Carpi, F., V. Smela, 2009. Biomedical applications of electroactive polymer actuators. Wiley Online Library.

Daerden, F., D. Lefeber, 2001. Pleated pneumatic artificial muscles: actuators for automation and robotics. Proceedings 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2, 738-743.

Grzesiak, A., R. Becker, A. Verl, 2011. The bionic handling assistant: a success story of additive manufacturing. Assembly Automation, 31(4), 329-333.

Ilievski, F., A. Mazzeo, R. Shepherd, X. Chen, G. Whitesides, 2011. Soft robotics for chemists. Angew. Chem. Int. Ed., 50, 1890-1895.

Jentoft, L.P., Y. Tenzer, D. Vogt, J. Liu, R.J. Wood, R. Howe, 2013. Flexible, stretchable tactile arrays from MEMS barometers. The 16th International Conference on Advanced Robotics, 6 pp.

Jones, A.S., 1999. On the complexity of computing. Advances in Computer Science, 555-566.
Kaltenbrunner, M., T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, I. Graz, S. Bauer-Gogonea, S. Bauer, T. Someya, 2013. An ultra-lightweight design for imperceptible plastic electronics. Nature, 499, 458-463.

Kernbach, S., T. Dipper, D. Sutantyo, 2011. Multi-modal local sensing and communication for collective underwater systems. Proceedings of the 11th International Conference on Mobile Robots and Competitions, 96-101.

Kim, S., E. Hawkes, K. Cho, M. Jolda, J. Foley, R. Wood, 2009. Intelligent robots and systems. IEEE/RSJ International Conference on IROS, 2228 - 2234.

Kim, S., C. Laschi, B. Trimmer, 2013. Soft robotics: a bioinspired evolution in robotics. Trends in Biotechnology, 31(5), 287-294.

Knuth, D.E., 1984. The Text Book. Addison-Wesley, 483 pp.

Laschi, C., M. Cianchetti, 2014. Soft robotics: new perspectives for robot bodyware and control. Frontiers in Bioengineering and Biotechnology, 2(3), 1-5.

Lehmann, W., 2001. Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature, 410, 447-450.

Lens, T., O. Von Stryk, A. Karguth, 2012. Safety properties and collision behavior of robotic arms with elastic tendon actuation. Proceedings of the 7th German Conference on Robotics, 1-6.

Lin, H., 2011. GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspir. Biomim., 6, 026007.

Majidi, C., 2014. Soft robotics: A perspective - Current trends and prospects for the future free access. Soft Robotics, 1(1), 5-11.

Margheri, L., 2012. Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements. Bioinspir. Biomim., 7(2), .

Mazzolai, B., 2012. Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions. Bioinspir. Biomim., 7(2).

Mosadegh, B., P. Polygerinos, C. Keplinger, S. Wennstedt, R. Shepherd, U. Gupta, J. Shim, K. Bertoldi, C.J. Walsh, G.M. Whitesides, 2013. Pneumatic networks for soft robotics that actuate rapidly. Advanced Functional Materials , 20 pp.

Nalwa, H.S., 1995. Ferroelectric polymers: Chemistry, physics and applications. CRC Press, Technology & Engineering, 912 pp.

O’Halloran, A., F. O’Malley, P. McHugh, 2008. A review on dielectric elastomer actuators, technology, applications, and challenges. AIP Journal of Applied Phisics, 104.

Oyekan, J., 2013. A creative computing approach to 3D robotic simulator for water pollution monitoring. Int. J. Creative Computing, 1(1), 92-119.

Paine, N., O. Sehoon, L. Sentis, 2014. Design and control considerations for high-performance series elastic actuators. IEEE/ASME Transactions on Mechatronics, 19(3), 1080-1091.

Park, J., S. Haddadin, J. Song, A. Albu-Sch ffer, 2011. Designing optimally safe robot surface properties for minimizing the stress characteristics of human-robot collisions. 2011 IEEE International Conference on Robotics and Automation (ICRA), 5413-5420.

Pelrine, R., R. Kornbluh, O. Pei, J. Joseph, 2000. High-speed electrically actuated elastomers with strain greater than 100%. Science, 287, 836-839.

Pfeifer, R., J. Bongard, 2007. How the body shapes the way we think: A new view of intelligence. MA: MITPress, 394.

Pfeifer, R., M. Lungarella, F. Iida, 2012. The challenges ahead for bio-inspired ´soft` robotics. Communications of the ACM, 55(11), 76-87.

Ranganath, K., P. Krupali, M. Sravanthy, 2011. Electronic skin-the sense of touch. IJCSET, 1(7), 387-390.

Renault, R.B., 1991. 3D hierarchies for animation. John Wiley & Sons, Ltd.

Sangbae, K., M. Spenko, S. Trujillo, B. Heyneman, D. Santos, M. Cutkosky, 2008. Smooth vertical surface climbing with directional adhesion. IEEE Transactions on Robotics, 24(1), 65-74.

Sekitani, T., U. Zschieschang, H. Klauk, T. Someya, 2010. Flexible organic transistors and circuits with extreme bending stability. Nature Materials, 9, 1015-1022.

Sfakiotakis, M., A. Kazakidi, N. Pateromichelakis, 2013. Octopus-inspired eight-arm robotic swimming by sculling movements. IEEE International Conference on Robotics and Automation (ICRA), 5155-5161.

Shepherd, R., F. Ilievski, W. Choi, S. Morin, A. Stokes, A. Mazzeo, 2011. Multigait sof trobot. Proc.Natl.Acad.Sci.U.S.A., 108.

Steltz, E., A. Mozeika, N. Rodenberg, E. Brown, H. Jaeger, 2009. JSEL: Jamming skin enabled locomotion. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 5672-5677.

Sugaiwa, T., H. Iwata, S. Sugano, 2008. Shock absorbing skin design for human-symbiotic robot at the worst case collision. 8th IEEE-RAS International Conference on Humanoid Robots, 481-486.

Tanaka, T., I. Nishio, S. Sun, S. Ueno-Nishio, 1982. Collapse of gels in an electric field. Science, 218, 467-469.

Wood, R., B. Finio, M. Karpelson, K. Ma, N.O. Pérez-Arancibia, P.S. Sreetharan, H. Tanaka, J.P. Whitney, 2012. Progress on pico air vehicles. Journal International Journal of Robotics Research, 31, 1292-1302.

Yong-Lae, P., C. Bor-Rong, R.J. Wood, 2012. Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors. IEEE/Sensors Journal, 12(8), 2711.

Yuk, H., J.H. Shin, J. Sungho, 2010. Design and control of thermal SMA based small crawling robot mimicking C. elegans. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 407-412.

Descargas

Publicado

2016-01-05

Cómo citar

Medina H, J., & Vélez N, P. (2016). “Soft Robotic”: Una nueva generación de robots. Maskana, 5, 109–118. Recuperado a partir de https://publicaciones.ucuenca.edu.ec/ojs/index.php/maskana/article/view/579