Removal of hemoglobin by adsorption on magnetic nanoparticles of Fe3O4 / TiO2

Authors

  • María Vanegas Centro de Estudios Ambientales (CEA), Universidad de Cuenca, Campus Quinta Balzay, Av. Víctor Manuel Albornoz, Cuenca, Ecuador.
  • Nancy García Centro de Estudios Ambientales (CEA), Universidad de Cuenca, Campus Quinta Balzay, Av. Víctor Manuel Albornoz, Cuenca, Ecuador.
  • Verónica Vázquez Centro de Estudios Ambientales (CEA), Universidad de Cuenca, Campus Quinta Balzay, Av. Víctor Manuel Albornoz, Cuenca, Ecuador.
  • Diana Moscoso Centro de Estudios Ambientales (CEA), Universidad de Cuenca, Campus Quinta Balzay, Av. Víctor Manuel Albornoz, Cuenca, Ecuador.

DOI:

https://doi.org/10.18537/mskn.05.02.05

Keywords:

hemoglobin, adsorption, magnetic nanoparticles, UV-VIS spectroscopy

Abstract

The removal of Hemoglobin (Hb) by protein adsorption on magnetic nanoparticles (Nps) of Fe3O4/TiO2 (core/shell), applying an external magnetic field, was investigated using ultraviolet spectroscopy in the ultraviolet and visible range (UV-VIS). The Nps concentration and temperature was varied during the contact step between Nps and Hb. Complementary, the intensity of the external magnetic field was varied during the removal of the Fe3O4/TiO2-Hb complex. With an initial Nps concentration of 8 mg ml-1, the absorbance of the supernatant solution showed a decrease of 11% with respect to the initial Hb solution (0,8 g l-1), and a decrease of 17% when the Nps concentration was increased with 50%. A reduction of the absorbtion of Hb was observed by increasing the temperature from 25 to 35ºC, but no evidence of denaturalization was found. During the Fe3O4/TiO2-Hb complex removal step, the absorption intensity nearly decreased 30% by increasing the strength of the magnetic field. Finally, the biochemical oxygen demand (BOD5) of the initial Hb solution and supernatant was determinated. The value of the initial Hb solution was 100 mg ml-1 and the results for all treated solutions were lower (< 62 mg ml-1) reflecting the impact of magnetic Nps in the removal of Hb.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

American Water Works Association, 1999. Standard Methods for the Examination of Water and Wastewater. (20th ed.) Prepared and Published jointly by the American Public Health Association (APHA), American Water Works Association (AWWA), and the Water Environment Federation (WEF).

Beydoun, D., R. Amal, 2002. Implications of heat treatment on the properties of a magnetic iron oxide - titanium dioxide photocatalyst. Mater. Sci. Eng. B, 94, 71-81.

Beydoun, D., R. Amal, G. Low, S. McEvoy, 2000. Novel Photocatalyst: Titania-Coated Magnetite. Activity and Photodissolution. J. Phys. Chem. B, 104(18), 4387-4396.

Carawan, R., J. Chambers, R. Zall, 1979. Water and wastewater management in foof processing. The North Carolina Agricultural Extension Service, NC, USA, 127 págs.

Carp, O., C. Huisman, A. Reller, 2004. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem., 32(1-2), 33-177.

Catterall, K., K. Morris, C. Gladman, H. Zhao, 2001. The use of microorganisms with broad range substrate utilisation for the ferricyanide-mediated rapid determination of biochemical oxygen demand. Talanta, 55(6), 1187-1194.

Fargues, C., M. Bailly, G. Grevillot, 1998. Adsorption of BSA and hemoglobin on hydroxyapatite support : Equilibria and multicomponent dynamic adsorption. Adsorption, 16(4), 5-16.

Jin, B., W.-J. Bao, Z.-Q. Wu, X.-H. Xia, 2012. In situ monitoring of protein adsorption on a nanoparticulated gold film by attenuated total reflection surface-enhanced infrared absorption spectroscopy. Langmuir: the ACS Journal of Surfaces and Colloids, 28(25), 9460-9465.

Kan, X., Q. Zhao, D. Shao, Z. Geng, Z. Wang, J.-J. Zhu, 2010. Preparation and recognition properties of bovine hemoglobin magnetic molecularly imprinted polymers. J. Phys. Chem. B, 114(11), 3999-4004.

Kopac, T., K. Bozgeyik, J. Yener, 2008. Effect of pH and temperature on the adsorption of bovine serum albumin onto titanium dioxide. Colloid Surfaces A, 322(1-3), 19-28.

Maity, D., D.C. Agrawal, 2007. Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. J. Magn. Magn. Mater., 308(1), 46-55.

Mandzy, N., E. Grulke, T. Druffel, 2005. Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. Powder Technol., 160(2), 121-126.

Matsui, M., A. Nakahara, A. Takatsu, 2008. In situ observation of the state and stability of hemoglobin adsorbed onto glass surface by slab optical waveguide (SOWG) spectroscopy. Int. J. Chem. Biolog. Eng., 72-75.

Salimi, A., R. Hallaj, S. Soltanian, 2007. Immobilization of hemoglobin on electrodeposited cobalt-oxide nanoparticles: Direct voltammetry and electrocatalytic activity. Biophys. Chem., 130(3), 122-131.

Standard Methods Committee, 2001. Biochemical oxygen demand (BOD) (5210). Aggregate Organic Constituents, 5000, 2-13.

Topoglidis, E., C. Campbell, A. Cass, J. Durrant, 2001. Factors that affect protein adsorption on nanostructured titania films. A novel spectroelectrochemical application to sensing. Langmuir, 17(13), 7899-7906.

Vanegas, M.E., V. Vázquez, D. Moscoso, C. Cruzat, 2014. Síntesis y caracterización de nanopartículas magnéticas del tipo Fe3O4/TiO2 , efecto del pH en la dispersión y estabilización en soluciones acuosas. Maskana, 5(1), 43-55.

Wang, Y.-Q., H.-M. Zhang, R.-H. Wang, 2008. Investigation of the interaction between colloidal TiO2 and bovine hemoglobin using spectral methods. Colloid Surfaces B, 65(2), 190-196.

Zhang, H., R.L. Penn, R.J. Hamers, J.F. Banfield, 1999. Enhanced adsorption of molecules on surfaces of nanocrystalline particles. J. Phys. Chem. B, 103(22), 4656-4662.

Zhang, M., X. He, L. Chen, Y. Zhang, 2011. Preparation and characterization of iminodiacetic acid-functionalized magnetic nanoparticles and its selective removal of bovine hemoglobin. Nanotechnology, 22(6), 1-9.

Published

2014-12-25

How to Cite

Vanegas, M., García, N., Vázquez, V., & Moscoso, D. (2014). Removal of hemoglobin by adsorption on magnetic nanoparticles of Fe3O4 / TiO2. Maskana, 5(2), 49–59. https://doi.org/10.18537/mskn.05.02.05

Issue

Section

Research articles