Análisis superficial del deslizamiento del sector 5 de Junio (Cuenca, Ecuador) mediante escáner láser terrestre

Authors

  • Enrique Acosta Universidad de Cuenca
  • Alex Arce Universidad de Cuenca
  • Walter Becerra Universidad de Cuenca
  • Erick Espinoza Universidad de Cuenca
  • Henry González Universidad de Cuenca
  • Lady Naula Universidad de Cuenca
  • Paola Zúñiga Universidad de Cuenca

Keywords:

landslide, complex earth slide, earth flow, urban zone, terrestrial laser scanner, terrestrial LiDAR, CludCompare

Abstract

The landslide located at the 5 de Junio street and the 24 de Mayo Av., in the city of Cuenca, is causing partial or total structural damages in many houses of this sector, as well as notable deformations in the roads causing several traffic accidents. The instability of this colluvial slope seems to be related to: (i) its strong slope in the upper part, (ii) the low cohesive clay sands conforming the colluvium, (iii) an important contribution of groundwater, that according to the residents, increased after the construction of the Cuenca-Azogues highway, and (iv) the lack of adequate surface and underground drainage to the nearby Tarqui and Yanuncay rivers. In the research presented in this paper we attempted to quantify the sliding kinematics. To do this, two surveys were carried out by means of a terrestrial laser scanner (TLS) in June and July 2017. The comparison in CloudCompare of both surveys revealed that the sliding did not result in significant movements in the short and dry period of analysis. However, the morphological analysis of the landslide surface and its relationship with the spatial distribution of the damages in buildings allowed us to identify the typology of this landslide, specifically a complex earth slide or earth flow.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Angeli, M. G., Pasuto, A., Silvano, S. (2000). A critical review of landslide monitoring experiences. Engineering Geology, 55(3), 133-147. https://doi.org/10.1016/S0013-7952(99)00122-2

Barbarella, M. (2013). Monitoring of large landslides by Terrestrial Laser Scanning techniques: field data collection and processing. European Journal of Remote Sensing, 46(1), 126-151. https://doi.org/10.5721/EuJRS20134608

Barbarella, M., Fiani, M., Zollo, C. (2017). Assessment of DEM derived from very high-resolution stereo satellite imagery for geomorphometric analysis. European Journal of Remote Sensing, 50(1), 534–549.

Bardi, F., Raspini, F., Frodella, W., Lombardi, L., Nocentini, M., Gigli, G., … Casagli, N. (2017). Monitoring the rapid-moving reactivation of earth flows by means of GB-InSAR: The April 2013 Capriglio Landslide (Northern Appennines, Italy). Remote Sensing, 9(2), 165. https://doi.org/10.3390/rs9020165

Basabe, P., Neumann, A., Almeida, E., Herrera, B., García, E., Ontaneda, P. (1998). Prevención de desastres naturales en la Cuenca del Paute--Informe final: Proyecto Precupa. Swiss Disaster Relief Unit (SDR/CSS), Cuenca, Ecuador.

Behling, R., Roessner, S. (2017). Spatiotemporal landslide mapper for large areas using optical satellite time series data. In: Mikos, M., Tiwari, B., Yin, Y., Sassa, K. (Eds). Advancing Culture of Living with Landslides. WLF 2017. Springer, Cham. pp. 143-152.

Bitelli, G., Dubbini, M., Zanutta, A. (2004). Terrestrial laser scanning and digital photogrammetry techniques to monitor landslide bodies. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 35(B5), 246-251.

Brabb, E. E., B., Harrod, L. (1989). Landslides: extent and economic significance. In: Brabb, E. E., Harrod, B. L. (Eds.). Proceedings of the 28th International Geological Congress: Symposium on Land Slides, Washington D.C., US. xiv + 385 p.

Brückl, E., Brunner, F. K., Kraus, K. (2006). Kinematics of a deep-seated landslide derived from photogrammetric, GPS and geophysical data. Engineering Geology, 88(3), 149-159.

CERESIS (Centro Regional de Sismología de América del Sur). (1985). Catálogo de terremotos para América del Sur. Programa para la mitigación de los efectos de los terremotos en la Región Andina. Proyecto SISRA, 1, 14.

Chen, R. F., Chang, K. J., Angelier, J., Chan, Y. C., Deffontaines, B., Lee, C. T., Lin, M. L. (2006). Topographical changes revealed by high-resolution airborne LiDAR data: The 1999 Tsaoling landslide induced by the Chi-Chi earthquake. Engineering Geology, 88(3-4), 160-172. https://doi.org/10.1016/j.enggeo.2006.09.008

Colesanti, C., Wasowski, J. (2006). Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Engineering Geology, 88(3-4), 173-199. https://doi.org/10.1016/j.enggeo.2006.09.013

Cruden, D. M., Varnes, D. J. (1996). Landslides: investigation and mitigation. Chapter 3-Landslide types and processes. Transportation Research Board Special Report, 247 p.

Dewitte, O., Jasselette, J. C., Cornet, Y., Van Den Eeckhaut, M., Collignon, A., Poesen, J., Demoulin, A. (2008). Tracking landslide displacements by multi-temporal DTMs: A combined aerial stereophotogrammetric and LIDAR approach in western Belgium. Engineering Geology, 99(1-2), 11-22. https://doi.org/10.1016/j.enggeo.2008.02.006

Du, J-C., Teng, H-C. (2007). 3D laser scanning and GPS technology for landslide earthwork volume estimation. Automation in Construction, 16(5), 657-663. https://doi.org/10.1016/j.autcon.2006.11.002

Ferrigno, F., Gigli, G., Fanti, R., Intrieri, E., Casagli, N. (2017). GB-InSAR monitoring and observational method for landslide emergency management: The Montaguto earthflow (AV, Italy). Natural Hazards and Earth System Sciences, 17(6), 845-860. https://doi.org/10.5194/nhess-17-845-2017

García, A., Hördt, A., Fabian, M. (2010). Landslide monitoring with high resolution tilt measurements at the Dollendorfer Hardt landslide, Germany. Geomorphology, 120(1-2), 16-25. https://doi.org/10.1016/j.geomorph.2009.09.011

Gili, J. A., Corominas, J., Rius, J. (2000). Using global positioning system techniques in landslide monitering. Engineering Geology, 55, 167-192.

González-Zúñiga, J. C. (2010). Monitorización de deslizamientos de ladera mediante estación total y GPS diferencial. Aplicación al deslizamiento del kilómetro 35+000 de la vía Loja-Cuenca (Ecuador), 71 p. Retrieved from http://repositorio.educacionsuperior.gob.ec/handle/28000/1686

Herrera, G., Notti, D., García-Davalillo, J. C., Mora, O., Cooksley, G., Sánchez, M., … Crosetto, M. (2011). Analysis with C- and X-band satellite SAR data of the Portalet landslide area. Landslides, 8(2), 195-206. https://doi.org/10.1007/s10346-010-0239-3

Hutchinson, J. H. (1988). Morphological and geotechnical parameters of landslides in relation to geology and hydrogeology, landslides. Conference Paper in International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 26(2), 3-35.

Jiménez-Pacheco, J. (2002). Vulnerabilidad sísmica de las edificaciones de la ciudad de Cuenca mediante técnicas de simulación. EPN, Quito, Ecuador. 291 p.

Lin, H., Huang, H., Lv, Y., Du, X., Yi, W. (2016). Micro-UAV based remote sensing method for monitoring landslides in Three Gorges Reservoir, China. In: Geoscience and Remote Sensing Symposium (IGARSS), 2016 IEEE International, pp. 4944-4947.

Mora, P., Baldi, P., Casula, G., Fabris, M., Ghirotti, M., Mazzini, E., Pesci, A. (2003). Global Positioning Systems and digital photogrammetry for the monitoring of mass movements: application to the Ca’di Malta landslide (northern Apennines, Italy). Engineering Geology, 68(1), 103-121.

Mozas-Calvache, A. T., Pérez-García, J. L., Fernández-Del Castillo, T. (2017). Monitoring of landslide displacements using UAS and control methods based on lines. Landslides, 14(6), 2115-2128. https://doi.org/10.1007/s10346-017-0842-7

Niethammer, U., Rothmund, S., James, M. R., Travelletti, J., Joswig, M. (2010). UAV-based remote sensing of landslides. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(Part 5), 496-501.

Savvaidis, P. D. (2003). Existing landslide monitoring systems and techniques. From Stars to Earth and Culture. In: Honor of the Memory of Professor Alexandros Tsioumis. The Aristotle University of Thessaloniki, Greece, 242-258.

Strozzi, T., Farina, P., Corsini, A., Ambrosi, C., Thüring, M., Zilger, J., … Werner, C. (2005). Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry. Landslides, 2(3), 193-201. https://doi.org/10.1007/s10346-005-0003-2

Stumpf, A., Malet, J-P., Delacourt, C. (2017). Correlation of satellite image time-series for the detection and monitoring of slow-moving landslides. Remote Sensing of Environment, 189, 40-55.

Tarchi, D., Casagli, N., Fanti, R., Leva, D. D., Luzi, G., Pasuto, A., … Silvano, S. (2003). Landslide monitoring by using ground-based SAR interferometry: An example of application to the Tessina landslide in Italy. Engineering Geology, 68(1-2), 15-30. https://doi.org/10.1016/S0013-7952(02)00196-5

Teza, G., Galgaro, A., Zaltron, N., Genevois, R. (2007). Terrestrial laser scanner to detect landslide displacement fields: a new approach. International Journal of Remote Sensing, 28(16), 3425-3446.

Travelletti, J., Delacourt, C., Allemand, P., Malet, J. P., Schmittbuhl, J., Toussaint, R., Bastard, M. (2012). Correlation of multi-temporal ground-based optical images for landslide monitoring: Application, potential and limitations. ISPRS Journal of Photogrammetry and Remote Sensing, 70, 39-55. https://doi.org/10.1016/j.isprsjprs.2012.03.007

Travelletti, J., Malet, J-P., Delacourt, C. (2014). Image-based correlation of Laser Scanning point cloud time series for landslide monitoring. International Journal of Applied Earth Observation and Geoinformation, 32(0), 1-18. Retrieved from http://www.sciencedirect.com/science/article/pii/S0303243414000804

Uchimura, T., Towhata, I., Anh, T. T. L., Fukuda, J., Bautista, C. J. B., Wang, L., … Sakai, N. (2010). Simple monitoring method for precaution of landslides watching tilting and water contents on slopes surface. Landslides, 7(3), 351-357. https://doi.org/10.1007/s10346-009-0178-z

Ventura, G., Vilardo, G., Terranova, C., Sessa, E. B. (2011). Tracking and evolution of complex active landslides by multi-temporal airborne LiDAR data: The Montaguto landslide (Southern Italy). Remote Sensing of Environment, 115(12), 3237-3248. https://doi.org/10.1016/j.rse.2011.07.007

Walton, G., Atkinson, T. (1978). Some geotechnical considerations in the planning of surface coal-mines. Transactions of the Institution of Mining and Metallurgy Section A - Mining Industry, 87(OCT), A147-A171.

Published

2017-12-30

How to Cite

Acosta, E., Arce, A., Becerra, W., Espinoza, E., González, H., Naula, L., & Zúñiga, P. (2017). Análisis superficial del deslizamiento del sector 5 de Junio (Cuenca, Ecuador) mediante escáner láser terrestre. Maskana, 8(1), 171–183. Retrieved from https://publicaciones.ucuenca.edu.ec/ojs/index.php/maskana/article/view/1977

Issue

Section

II Congress Civil Engineering, Biosciences and Urbanism Sciences