Analysis and optimization of corrugated carbon/epoxy sandwich panels under compression

Authors

  • Luis Coello-Tapia Departamento de Ciencias de la Energía y Mecánica, Universidad de las Fuerzas Armadas ESPE, Latacunga, Ecuador. https://orcid.org/0000-0002-1496-0331
  • Fausto Jácome Departamento de Ciencias de la Energía y Mecánica, Universidad de las Fuerzas Armadas ESPE, Latacunga, Ecuador. https://orcid.org/0000-0002-3470-5813
  • Jonathan Zurita Departamento de Ciencias de la Energía y Mecánica, Universidad de las Fuerzas Armadas ESPE, Latacunga, Ecuador.
  • Diego Bustillos Departamento de Ciencias de la Energía y Mecánica, Universidad de las Fuerzas Armadas ESPE, Latacunga, Ecuador.

DOI:

https://doi.org/10.18537/mskn.13.01.08

Abstract

This research was carried out with the purpose of analyzing and optimizing a corrugated carbon/epoxy sandwich panel subjected to compressive loads, since traditional optimization techniques for composite structures are not applicable or are very limited. A practical and simple calculation methodology was used to determine the optimum behavior and configuration of the panel by means of an analytical optimization model. The results were then validated through a finite element model (FEM), where differences of 4% were found between the two models with symmetrical laminates and 25% with asymmetrical laminates, so that the methodology developed is only useful for designs with symmetrical laminates, which suggests that a theory that allows considering the asymmetry of the laminates should be included. The methodology used could serve as a basis for the collection of new results and possible comparisons.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Luis Coello-Tapia, Departamento de Ciencias de la Energía y Mecánica, Universidad de las Fuerzas Armadas ESPE, Latacunga, Ecuador.

Ingeniero Aeronáutico, Tecnólogo en Mecánica Aeronáutica mención Motores, Universidad de las Fuerzas Armadas ESPE, Departamento de Ciencias de la Energía y Mecánica, Latacunga, Ecuador.

Fausto Jácome, Departamento de Ciencias de la Energía y Mecánica, Universidad de las Fuerzas Armadas ESPE, Latacunga, Ecuador.

Magister en Ingeniería Mecánica mención Manufactura, Ingeniero Automotriz, Universidad de las Fuerzas Armadas ESPE, Departamento de Ciencias de la Energía y Mecánica, Latacunga, Ecuador.

Jonathan Zurita, Departamento de Ciencias de la Energía y Mecánica, Universidad de las Fuerzas Armadas ESPE, Latacunga, Ecuador.

Tecnólogo en Mecánica Aeronáutica mención Motores, Universidad de las Fuerzas Armadas ESPE, Departamento de Ciencias de la Energía y Mecánica, Latacunga, Ecuador.

Diego Bustillos, Departamento de Ciencias de la Energía y Mecánica, Universidad de las Fuerzas Armadas ESPE, Latacunga, Ecuador.

Magister en Industria 4.0, Ingeniero en Mecatrónica, Universidad de las Fuerzas Armadas ESPE, Departamento de Ciencias de la Energía y Mecánica, Latacunga, Ecuador.

References

Albazzan, M. A., Harik, R., Tatting, B. F., & Gürdal, Z. (2019). Efficient design optimization of nonconventional laminated composites using lamination parameters: A state of the art. Composite Structures, 209, 362-374. https://doi.org/10.1016/j.compstruct.2018.10.095

Awad, Z. K., Aravinthan, T., Zhuge, Y., & Gonzalez, F. (2012). A review of optimization techniques used in the design of fibre composite structures for civil engineering applications. Materials & Design, 33,

-544. https://doi.org/10.1016/j.matdes.2011.04.061

Balasubramanian, M. (2014). Composite materials and processing. (1a ed.). Boca Raton, Taylor & Francis Group, 167-265 pp.

Barbero, E. J. (1999). Introduction to composite materials design. (1a ed.). New York, Taylor & Francis Group, 183-216 pp.

Barbero, E. J. (2013). Finite element analysis of composite materials using abaqus. (1a ed.). New York, Taylor & Francis Group, 35-187 pp.

Campbell, F. C. (2004). Manufacturing process for advanced composites. (1a ed.). New York, Elsevier Ltd., 132-163 pp.

Chantieva, M. E., Dzhabrailov, K. A., Iluhin, A. V., & Gematudinov, R. A. (2019, March). Software optimization methods for composite materials. In: 2019 Systems of signals generating and processing in the field of on board communications (pp. 1-4). IEEE. https://doi.org/10.1109/SOSG.2019.8706771

Catapano, A., & Montemurro, M. (2014). A multi-scale approach for the optimum design of sandwich plates with honeycomb core. Part II: the optimisation strategy. Composite structures, 118, 677-690. https://doi.org/10.1016/j.compstruct.2014.07.058

Gholami, M., Alashti, R. A., & Fathi, A. (2016). Optimal design of a honeycomb core composite sandwich panel using evolutionary optimization algorithms. Composite Structures, 139, 254-262. https://doi.org/10.1016/j.compstruct.2015.12.019

Jácome-Guevara, F. A., Coello-Tapia, L. A., & Zurita-Caisaguano, J. R. (2022). Fabricación de los Fan Blades de materiales compuestos de un motor Turbofan de uso Aeronáutico. Dominio de las Ciencias, 8(2), 1134-1151. https://dx.doi.org/10.23857/dc.v8i2.2696

Jones, R. M. (1999). Mechanics of composite materials. (2a ed.). Virginia, Taylor & Francis Group, 1999, 2-362 pp.

Kassapoglou, C. (2010). Design and analysis of composite structures: With applications to aerospace. (1a ed.). United Kingdom, John Wiley & Sons, 33-138 pp.

Kollar, L. P. (2003). Mechanics of composite structures. (1a ed.). New York, Cambridge University Press, 63-166 pp.

Lu, T., Liu, T., & Deng, Z. (2008). Thermoelastic properties of sandwich materials with pin-reinforced foam cores. Science in China Series E: Technological Sciences, 51(12), 2059-2074. https://doi.org/10.1007/s11431-008-0226-2

Matthews, F. L. (2000). Finite element modelling of composite materials and structures. (1a ed.). North America, Woodhead Publishing Limited, 3-30 pp.

Montemurro, M., Pagani, A., Fiordilino, G. A., Pailhès, J., & Carrera, E. (2018). A general multi-scale two-level optimisation strategy for designing composite stiffened panels. Composite Structures, 201, 968-979. https://doi.org/10.1016/j.compstruct.2018.06.119

Nikbakt, S., Kamarian, S., & Shakeri, M. (2018). A review on optimization of composite structures Part I: Laminated composites. Composite Structures, 195, 158-185. https://doi.org/10.1016/j.compstruct. 2018.03.063

Nielsen, L. F. (2005). Composite materials properties as influenced by phase geometry. (1a ed.). New York, Springer, 65-151 pp.

Rao, S. S. (2009). Engineering optimization theory and practice. (4a ed.). New York, John Wiley & Sons, 63-235 pp.

Reddy, J. N. (2004). Mechanics of laminated composite plates and shells theory and analysis. (2a ed.). Florida, CRC Press LLC, 109-156 pp.

Voyiadjis, G. Z. (2005). Mechanics of composite materials with MATLAB. (1a ed.). Heidelberg, Springer, 47-189 pp.

Wang, Z., & Sobey, A. (2020). A comparative review between Genetic Algorithm use in composite optimisation and the state-of-the-art in evolutionary computation. Composite Structures, 233, 111739. https://doi.org/10.1016/j.compstruct.2019.111739

Wadley, H. (2003). Fabrication and structural performance of periodic cellular metal sandwich structures. Composites Science and Technology, 63(16), 2331-2343. https://doi.org/10.1016/S0266-3538(03)00266-5

Wolf, K. (2001, April). Optimization of composite sandwich panels using evolutionary computation methods. In 19th AIAA Applied Aerodynamics Conference (p. 1277). https://doi.org/10.2514/6.2001-1277

Zhang, J., Supernak, P., Mueller-Alander, S., Wang, C. H. (2013). Improving the bending strength and energy absorption of corrugated sandwich composite structure. Materials and Design, 52, 767-773. https://10.1016/j.matdes.2013.05.018

Zurita-Caisaguano, J. R., Coello-Tapia, L. A., & Jácome-Guevara, F. A. (2022). Análisis sistemático de estructuras de materiales compuestos (carbono-epoxi) tipo sándwich, utilizadas en aplicaciones aeronáuticas. Dominio de las Ciencias, 8(2). https://dx.doi.org/10.23857/dc.v8i2.2682

Published

2022-06-30

How to Cite

Coello-Tapia, L., Jácome, F., Zurita, J., & Bustillos, D. (2022). Analysis and optimization of corrugated carbon/epoxy sandwich panels under compression. Maskana, 13(1), 58–66. https://doi.org/10.18537/mskn.13.01.08

Issue

Section

Research articles