Application of the grid convergence index to a laminar axisymmetric sudden expansion flow

Autores/as

  • Verónica M. Carrillo R. Albrook Hydraulics Laboratory, Department of Civil and Environmental Engineering, Washington State University, 405 Spokane Street, Pullman WA, USA, 99164-2910. Department of Civil Engineering, Hydraulics & Fluid Dynamics Laboratory, Universidad de Cuenca, Av. 12 de Abril y Agustin Cueva, Cuenca, Ecuador, 010150.
  • John E. Petrie Albrook Hydraulics Laboratory, Department of Civil and Environmental Engineering, Washington State University, 405 Spokane Street, Pullman WA, USA, 99164-2910.
  • Esteban A. Pacheco Department of Civil Engineering, Hydraulics & Fluid Dynamics Laboratory, Universidad de Cuenca, Av. 12 de Abril y Agustin Cueva, Cuenca, Ecuador, 010150.

Resumen

RESUMEN

El uso de modelos numéricos para la representación de procesos naturales es cada vez más común, gracias al desarrollo de herramientas avanzadas problemas cada vez más complejos pueden ser abordados. Sin embargo, mientras sistemas avanzados pueden ser solventados, la incertidumbre de la precisión de la solución obtenida se mantiene. La comparación entre los valores experimentales y los obtenidos mediante las simulaciones no es evidencia suficiente de la calidad de los resultados. El método del índice de convergencia de la grilla (GCI) se propone como una alternativa para calcular y reportar la estimación del error de discretización en la aplicación de mecánica de fluidos computacional (CFD) para las simulaciones, este método permite la estimación del error de discretización mediante la aplicación de la teoría de Extrapolación de Richardson, este procedimiento es aplicado a un caso de flujo laminar en una tubería que experimenta una expansión repentina. Los resultados de un estudio experimental se utilizan para verificar tanto la simulación numérica como los resultados de GCI. Como resultado de la aplicación de este método el orden de precisión del esquema numérico utilizado fue verificado. Comparando los resultados numéricos con los valores experimentales se obtuvo un máximo error de 6%. Finalmente, considerando las dos grillas más finas se puede concluir que el rango asintótico se ha alcanzado y que una grilla más fina no mejorara considerablemente la precisión de la solución como lo hará el costo del procedimiento.

Palabras clave: Análisis de incertidumbre, dinámica de fluidos computacional, extrapolación de Richardson, error de discretización.

ABSTRACT

The use of numerical models to represent natural processes is increasingly common. The development of advanced numerical tools allows a more physically-based representation of complex flow phenomena. While more advanced systems can be solved, the uncertainty of the accuracy of the solutions obtained remains. The mere comparison between experiments and simulations is not enough proof of strength of the results. The Grid Convergence Index (GCI) methodology has been proposed with the aim to provide a mechanism to calculate and report discretization errors estimates in computational fluid dynamics (CFD) simulations. It permits the quantification of the uncertainty present in grid convergence. This method uses a grid convergence error estimator that is obtained by applying the generalized Richardson Extrapolation theory. The process is applied to an axisymmetric sudden expansion laminar flow case. Experimental results are used to verify the numerical simulation and GCI outcome. As a result of the application of this method the order of accuracy of the numerical scheme was verified. Additionally, comparing the numerical results with the experimental values, a maximum error of 6% was obtained. Finally, considering the two finest meshes, it can be concluded that the asymptotic range has been reached and that a finer Mesh won’t improve the accuracy of the solution when considering the increased numerical cost.

Keywords: Uncertainty analysis, computational fluid dynamics, Richardson extrapolation, discretization error.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Batchelor, G., 2000. An introduction to fluid dynamics. New York, Cambridge University Press.

Celik, I., W. Zhang, 1995. Calculation of numerical uncertainty using Richardson extrapolation: Application to some simple turbulent flow calculations. Journal of Fluid Engineering, 117, 439-445.

Celik, I., O. Karatekin, 1997. Numerical experiments on application of Richardson extrapolation With nonuniform grids. ASCE Journal of Fluids Engineering, 119, 584-590.

Geankoplis, C., 2003. Transport processes and separation processes principles. Prentice Hall Professional Technical Reference.

Hammad, K., M.V. Ötügen, E.B. Arik, 1999. A PIV study of the laminar axisymmetric sudden expansion flow. Experiments in Fluids, 26, 266-272.

Macagno, E., T.K. Hung, 1967. Computational and experimental study of a captive eddy. » Journal of Fluid Mechanics, 28, 43-64.

Masatsuka, K., 2009. I do like CFD. VOL. 1: Governing equations and exact solutions.Katate Masatsuka.

Nayak, S., K.P. Bhuvana, 2012. Engineering Physics. McGraw-Hill.

Oosthuizen, P.H., D. Naylor, 1999. An introduction to convective heat transfer analysis. WCB/McGraw-Hill.

Open∇Foam, 2014. The open source CFD toolbox: User guide. Available at http://www.openfoam.org/ docs/user/index.php.

Richardson, L., 1910. The approximate arithmetic solution by finite differences of physical problems involving differential equations, with application to stresses in a masonry dam. Transactions of the Royal Society of London, Series A, 210, 307-357.

Roache, P., 1994. Perspective: A method for uniform reporting of grid refinement studies. ASCE Journal of Fluids Engineering, 116, 405-413.

Roache, P., 1998. Verification and validation in computational science and engineering. Hermosa Publishers: Albuquerque.

Roache, P., 2003. Conservatism of the grid convergence index in finite volume computations on steady-state fluid flow and heat transfer. Journal of Fluids Engineering, 125, 731-732.

White, F., 2011. Fluid mechanics. McGraw-Hill.

Descargas

Publicado

2016-01-05

Cómo citar

Carrillo R., V. M., Petrie, J. E., & Pacheco, E. A. (2016). Application of the grid convergence index to a laminar axisymmetric sudden expansion flow. Maskana, 5, 115–123. Recuperado a partir de https://publicaciones.ucuenca.edu.ec/ojs/index.php/maskana/article/view/559