WEAP21 based modelling under climate change considerations for a semi-arid region in southern-central Chile
DOI:
https://doi.org/10.18537/mskn.08.02.10Keywords:
catchment modelling, intermittent, WEAP, GLUE, uncertainty, climate change, regional climate modelAbstract
The water balance of an irrigation project in the Chilean semi-arid zone was modelled using the WEAP21 code. A combined deterministic/stochastic protocol was applied for defining the hydrological prediction intervals of the model. Climate Change potential implications on the useful life of the irrigation project (year 2070) were predicted considering the variability in precipitation and temperature forecasts. Thereto, it was considered the scenario A1B of the 2007 Intergovernmental Panel on Climate Change report, generated by the Regional Climate Model PRECIS-ECHAM, specially developed for Chilean conditions. The study revealed that most of the inspected hydrological model parameters are insensitive to model predictions and the associated simulation limits may be categorized as acceptable. Nevertheless, the structure of WEAP21 had difficulties representing low flows because of the apparent inability to mimic the complex hydro-physical characteristics of the shrink-swell granitic soils which are predominant in the study basin. Even though the original Climate Change projections (CChP) of the RCM were refined, using observations of the historical period, it is important to underline that significant uncertainties may remain and as such the current results should be handled with care. With respect to historical records, mean annual climate forecasts suggest a maximum temperature increment of about +1.1oC and a maximum reduction in precipitation of 20.7%. The hydrological modelling suggests a maximum reduction in the mean annual streamflow of 49.7% and a reduction in the magnitude and frequency of streamflow peaks. Bearing in mind the potential uncertainties attached to CChP, the irrigation project will most probably be significantly affected in terms of water availability and crop water consumption since rainfall is expected to decrease and temperature, and as such evapotranspiration, to increase.
Downloads
Metrics
References
Allen, R., Pereira, L., Raes, D., Smith, M. (1998). Crop evapotranspiration guidelines for computing crop water requirements. Rome, Italy: FAO Irrigation and Drainage paper, 56, pp 300.
Ahmed, K., Wang, G., Silander, J., Wilson, A., Allen, J., Horton, R., Anyah, R. (2013). Statistical downscaling and bias correction of climate model outputs for climate change impact assessment in the U.S. northeast. Global and Planetary Change, 100, 320-332. doi:10.1016/j.gloplacha.2012.11.003.
Barnett, T. P., Pierce, D. W., Hidalgo, H. G., Bonfils, C., Santer, B. D., Das, T., Bala, G., Wood, A. W., Nozawa, T., Mirin, A. A. et al. (2008). Human-induced changes in the hydrology of the western United States. Science, 319, 1080-3.
Bengóa, J. (2003). Pobreza en Chile, identificación de situaciones de pobreza por comuna. Centro de Estudios Miguel Enriquez, CEME, Chile, pp 13.
Beven, K. (1993). Prophecy, reality and uncertainty in distributed hydrological modelling. Advances in Water Resources, 16, 41-51. doi:10.1016/0309-1708(93)90028-E
Beven, K. (2006). A manifesto for the equifinality thesis. Journal of Hydrology, 320(1-2), 18-36. doi:10.1016/j.jhydrol.2005.07.007
Beven, K. (2011). Rainfall-runoff modelling: The Primer (2nd ed.). Chichester, England: John Wiley & Sons, pp 488.
Beven, K., Binley, A. (1992). The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processes, 6(3), 279-298. doi:10.1002/hyp.3360060305
Binley, A., Beven, K., Calver, A., Watts, L. (1991). Changing responses in hydrology: Assessing the uncertainty in physically based model predictions. Water Resources Research, 27, 1253-1261. doi:10.1029/91WR00130
CCGUC-SEI. (2009). Guía metodológica - Modelación hidrológica y de recursos hídricos con el modelo WEAP. Centro de Cambio Global-Universidad Católica de Chile (CCGUC) and Stockholm Environment Institute (SEI), Boston, pp 85.
CGIAR-CSI. (2008). SRTM 90m digital elevation data. http://srtm.csi.cgiar.org/. Accessed 10 September 2012.
Chow, Ven Te., Maidment, D. R., Mays, L. W. (1988). Applied hydrology (2nd ed.). Singapore: McGraw-Hill International Editions, pp 572.
Christensen, J. H., Carter, T. R., Rummukainen, M., Amanatidis, G. (2007). Evaluating the performance and utility of regional climate models: The PRUDENCE project. Climatic Change, 81, 1-6. doi:10.1007/s10584-006-9211-6
CIREN. (1998). Descripciones de suelos, materiales, y símbolos. Estudio agrológico VIII Región de Chile. Centro de informaciones de Recursos Naturales, Santiago, Chile, pp 555.
CNR. (1997). Cálculo y cartografía de la evapotranspiración potencial en Chile. Comisión Nacional de Riego y Centro de Información de Recursos Naturales, Chile, pp 54.
Cortés, G., Schaller, S., Rojas, M., Garcia, L., Descalzi, A., Vargas, L., Vargas, L., MacPhee, J. (2012). Assessment of the current climate and expected climate changes in the metropolitan region of Santiago de Chile. Leipzig, Germany: Helmholtz Centre for Environmental Research-UFZ.
Dankers, R., Feyen, L. (2008). Climate change impact on flood hazard in Europe: An assessment based on high-resolution climate simulations. Journal of Geophysical Research, 113, D19105. doi:10.1029/2007JD009719.
Deressa, T. T., Hassan, R., Ingler, C. (2008). Measuring Ethiopian farmers’ vulnerability to climate change across regional states. International Food Policy Research Institute No. 806. http://www.ifpri.org/pubs/dp/ifpridp00806.asp. Accessed 16 September 2014.
DGA. (1987). Balance hídrico de Chile. Dirección General de Aguas, Ministerio de Obras Públicas, Santiago, Chile. http://documentos.dga.cl/SUP1540.pdf. Accessed 20 September 2012.
Easterling, W., Aggarwal, P., Batima, P., Brander, K., Erda, L., Howden, M., Kirilenko, A., Morton, J., Soussana, J-F., Schmidhuber, J., et al. (2007). Food, fibre and forest products. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, pp 273-313.
Fenicia, F., Savenije, H. H. G., Matgen, P., Pfister, L. (2008). Understanding catchment behavior through stepwise model concept improvement. Water Resources Research, 44, 1-13. doi:10.1029/2006WR005563
Fowler, H. J., Ekström, M., Blenkinsop, S., Smith, A. P. (2007). Estimating change in extreme European precipitation using a multimodel ensemble. Journal of Geophysical Research, 112, D18104. doi:10.1029/2007JD008619.
Freer, J., Beven, K., Ambroise, B. (1996). Bayesian estimation of uncertainty in runoff prediction and the value of data: An application of the GLUE approach. Water Resources Research, 32(7), 2161-2173. doi:10.1029/95WR03723.
Graham, L. P., Bergström, S. (2001). Water balance modeling in the Baltic Sea drainage basin - Analysis of meteorological and hydrological approaches. Meteorology Atmospheric Physics, 77, 45-60. doi:10.1007/s007030170016
Grau, P. (2007). Cultivo del cerezo en el secano interior de la Región del Bío-Bío. Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación Quilamapu: Chillán, Chile. pp 176.
Hingray, B., Saïd, M. (2014). Partitioning internal variability and model uncertainty components in a multimember multimodel ensemble of climate. Journal of Climate, 27(17), 6779-6798. doi:http://dx.doi.org/10.1175/JCLI-D-13-00629.1.
Hublart, P., Ruelland, D., Dezetter, A., Jourde, H. (2013). Modelling current and future trends in water availability for agriculture on a semi-arid and mountainous Chilean catchment, International Association of Hydrological Sciences, 360, 26-32.
Hublart, P., Ruelland, D., Dezetter, A., Jourde, H. (2015). Reducing structural uncertainty in conceptual hydrological modelling in the semi-arid Andes. Hydrology and Earth System Sciences, 19(5), 2295-2314. doi:10.5194/hess-19-2295-2015.
Ingol-Blanco, E., McKinney, D. (2009). Hydrologic model for the Rio Conchos Basin: Calibration and validation. CRWR Online Report 08-09. http://www.weap21.org/downloads/rpt-0809.pdf. Accessed 20 October 2015.
IPCC. (2007). Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Report AR4: Geneva, Switzerland; pp 104.
Legates, D., McCabe, G. (1999). Evaluating the use of "goodness-of-fit" measures in hydrological and hydroclimatic model validation. Water Resources Research, 35(1), 233-241.
Maidment, D. (1993). Handbook of hydrology. New York, NJ: McGraw-Hill, pp 1424.
Makropoulos, C., Butler, D. (2004). Spatial decisions under uncertainty: Fuzzy inference in urban water management. Journal of Hydroinformatics, 6(1), 3-18.
Maurer, E. (2007). Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, California under two emissions scenarios. Climatic Change, 82(3), 309-325. doi:10.1007/s10584-006-9180-9
MetED. (2012). Preparing hydro-climate inputs for climate change in water resource planning. https://www.meted.ucar.edu/training_module_es.php?id=959#.Vd9HXvl_Oko. Accessed 26 June 2014.
Nash, J., Sutcliffe, J. (1970). River flow forecasting through conceptual models. Part I: A discussion of principles. Journal of Hydrology, 10, 282-290. doi:10.1016/0022-1694(70)90255-6.
Palmer, M., Bernhardt, E., Chornesky, E., Collins, S., Dobson, A., Duke, C. G. B., Jacobson, R., Kingsland, S., Kranz, R., Mappin, M., et al. (2004). Ecology for a crowded planet. Science, 304, 1251-1252. doi:10.1126/science.1095780
Petersen, H. (2007). Elementos para la creación de un manual de buenas prácticas para instalaciones solares térmicas domiciliarias. Santiago, Chile: University of Chile.
Poblete, D., Vicuña, S., Meza, F., Bustos, E. (2012). Water resources modeling under Climate Change scenarios of Maule River Basin (Chile) with two main water intensive and competing sectors: agriculture and hydropower generation. Ireland: World Congress on Water, Climate and Energy. Available at https://keynote.conference-services.net/resources/444/2653/pdf/IWAWCE2012_0399.pdf
Ragettli, S., Cortes, G., McPhee, J., Pellicciotti, F. (2014). An evaluation of approaches for modelling hydrological processes in high-elevation, glacierized Andean watershed. Hydrological Processes, 28(23), 5674-5695. doi:10.1002/hyp.10055.
Rawls, W., Ahuja, L., Brakensiek, D., Shirmohammadi, A. (1993). Infiltration and soil water movement. New York, NJ: McGraw Hill, pp 51.
Refsgaard, J. C. (1997) Parameterisation, calibration and validation of distributed hydrological models. Journal of Hydrology, 198, 69-97.
Riquelme, J., Perez, C., Shigehiko, Y. (2004). Manejo y prácticas conservacionista del suelo para un desarrollo sustentable del secano. Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación Quilamapu Chillán, Boletín INIA - No 124, pp 200.
Rojas, J. (2013). Proyecto ANILLOS SOC‐28: Impactos sociales y ambientales del cambio climático global en la región del Bío Bío. Desafíos para la sostenibilidad del siglo XXI. Universidad de Concepción, Chile, pp 84.
Sanderson, E. W., Jaitech, M., Levy, M. A., Redford, K. H., Wannebo, A. V., Woolmer, G. (2002). The human footprint and the last of the wild. BioScience, 52, 891-904.
Savenije, H. H. G. (2009). The art of hydrology. Hydrology and Earth System Sciences, 13, 157-161.
Selker, J., Rupp, D., Leñam, M., Uribe, H. (2000). Estudio hidrológico en el secano interior: Resultados preliminares del proyecto piloto en Portezuelo. Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación Quilamapu Chillán, pp 41.
Shinomi, Y., Pérez, C. (2004). Métodos y estrategias para el desarrollo sustentable del secano. Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación Quilamapu Chillán, Boletín INIA - No 122, pp 159.
Sieber, J., Purkey, D. (2015). User guide for WEAP. Stockholm, Sweden: Stockholm Environment Institute (SEI), Somerville, MS: U.S. Center, pp 400.
Singh, V. P., Woolhiser, D. A. (2002). Mathematical modeling of watershed hydrology. Journal of Hydrologic Engineering, 7(4), 270-92.
Spear, R. C., Hornberger, G. M. (1980). Eutrophication in Peel Inlet, II, Identification of critical uncertainties via Generalised Sensitivity Analysis. Water Resources, 14, 43-49.
Stewart, R., Majdi, R., Najm, A., Rupp, D., Lane, J., Uribe, H., Arumí, J., Selker, J. (2015). Hillslope runoff thresholds with shrink-swell clay soils. Hydrological Processes, 29(4), 557-571. doi:10.1002/hyp.10165
Uribe, H., Arumí, J., González, L., Salgado, L. (2003). Balances hidrológicos para estimar recarga de acuíferos en el Secano Interior, Chile. Revista Ingeniería Hidráulica en México, XVIII(3), 17-28.
Uribe, H., Perez, C., Okuda, Y. (2004). Recursos hídricos y manejo del agua para un desarrollo sustentable del secano. Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación Quilamapu Chillán, Boletín INIA, No 123, pp 197.
Vargas, X. (2012). Disponibilidad futura de los recursos hídricos frente a escenarios de cambio climático en Chile. Medio Ambiente y Desarrollo. CEPAL, pp 227.
Vázquez, R. F. (2003). Assessment of the performance of physically based distributed codes simulating medium size hydrologycal systems. PhD Thesis, Katolieke Universiteit Leuven.
Vázquez, R. F., Beven, K., Feyen, J. (2009). GLUE based assessment on the overall predictions of a MIKE SHE application. Water Resources Management, 23(7), 1325-1349. doi:10.1007/s11269-008-9329-6).
Vicuña, S., Garreaud, R., MacPhee, J. (2010). Climate change impacts on the hydrology of a snowmelt driven basin in semiarid Chile. Climatic Change, 105(3-4), 469-488. doi:10.1007/s10584-010-9888-4
Willems, P., Mora, D., Vansteenkiste, Th., Teferi Taye, M., Van Steenbergen, N. (2014). Parsimonious rainfall-runoff model construction supported by time series processing and validation of hydrological extremes - Part 2: Intercomparison of models and calibration approaches. Journal of Hydrology, 510, 591-609. doi:10.1016/j.jhydrol.2014.01.028
Wood, A., Edwin, M. (2002). Long-range experimental hydrologic forecasting for the eastern United States. Journal of Geophysical Research, D20(107), 1-15. doi: 10.1029/2001JD000659
Wood, A., Leung, L., Sridhar, V., Lettenmaier, D. (2003). Hydrologic Implications of Dynamical and Statistical Approaches to Downscaling Climate Model Outputs. Climatic Change, 62(1),189-216. doi:10.1023/B:CLIM.0000013685.99609.9e
Yates, D., Purkey, D., Sieber, J., Huber-Lee, A., Galbraith, H. (2005). WEAP21 - A demand-, priority-, and preference-driven water planning model. International Water Resources Association, 30(4), 501-512.
Downloads
Published
How to Cite
Issue
Section
License
Copyright © Autors. Creative Commons Attribution 4.0 License. for any article submitted from 6 June 2017 onwards. For manuscripts submitted before, the CC BY 3.0 License was used.
You are free to:
Share — copy and redistribute the material in any medium or format |
Adapt — remix, transform, and build upon the material for any purpose, even commercially. |
Under the following conditions:
Attribution — You must give appropriate credit, provide a link to the licence, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licenser endorses you or your use. |
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the licence permits. |