Implementación de curvas de calibración esclerométricas para hormigones convencionales de las hormigoneras más importantes del Austro

Authors

Keywords:

pathology, infraestructure evaluation, sclerometer, concrete strength, non-destructive testing, rebound hammer, calibration curves

Abstract

One of the most used non-destructive test for infrastructure evaluation and pathology is the rebound hammer. Its advantages include a considerable reduction in field-work, time and money. Although, the use of the standardized reference curve provided by the manufacturer is the common practice for concrete evaluation when using the rebound hammer, it is well known that its use to estimate in-situ compressive strength is not reliable. To achieve the necessary precision, the equipment must be calibrated for a specific mix/design, using a statistical significant number of samples. The overall objective of this research was to obtain and implement sclerometric calibration curves for the most used concrete types provided by two of the more important ready-mix plants in the southern part of Ecuador. The mentioned curves were obtained by correlating the compressive strength with the rebound hammer index (taken right before the compressive test was made). During testing the influence of the sample’s moisture content and the support/confinement conditions were analyzed. Results revealed that the moisture content in concrete specimens resulted in variations of 11.4%, decreasing the rebound indexes. This information was used to define correction factors for the calibration curves. Furthermore, it was found that the confinement conditions of the sample have no influence in the rebounds. Finally, by successfully obtaining the sclerometric calibration curves for the most used concrete types in the region, the goal of having a precise infrastructure evaluation is reached.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

ASTM C805. (2013). Standard test method for rebound number of hardened concrete. Washington, DC, US: ASTM International, W.

Avid, F. A., Saad, J., Sota, J. (2010). Estudio del hormigón de una estructura expuesta a la intemperie por quince años, construída en dos etapas. VI Congreso Internacional sobre Patología y Recuperación de Estructuras, Tópico 2-Rehabilitación y refuerzos de estructuras, 8 p. Córdova, Argentina.

Ayday, C., Göktan, R. M. (1992). Correlations between L- and N-type Schmidt hammer rebound values obtained during field testing. Rock characterization: ISRM Symposium, EUROCK'92, Chester, UK, 47-50.

Aydin, F., Saribiyik, M. (2010). Correlation between Schmidt Hammer and destructive compressions testing for concretes in existing buildings. Scientific Research and Essays, 5(13), 1644-1648.

Breysse, D. (2012). Nondestructive evaluation of concrete strength: An historical review and a new perspective by combining NDT methods. Construction and Building Materials, 33, 139-163.

Breysse, D., Klysz, G., Dérobert, X., Sirieix, C., Lataste, J. (2008). How to combine several nondestructive techniques for a better assessment of concrete structures. Cement and Concrete Research, 30(6), 783-793.

Breysse, D., Sirieix, C., Lataste, J. (2012). Quality of concrete condition assessment using several nondestructive techniques. Structure and Infrastructure Engineering, 8(6), 545-555.

Cianfrone, F., Facaoaru, I. (1979). Study on the introduction into Italy of the combined non-destructive method, for the determination of in situ concrete strength. Matériaux et Construction, 12(5), 413-424.

Cortes, J. G. G. (1993). Determinación del Índice esclerométrico en hormigones: factores que lo afectan. Ingeniería Civil, UNAL, Bogota, Colombia. 8 p. Disponible en https://revistas.unal.edu.co/index.php/ingeinv/article/viewFile/21576/22582

Diez, D. M., Barr, C. D., Cetinkaya-Rundel, M. (2015). OpenIntro Statistics (3rd ed.), 436 p. Obtenido de openintro.org

Grantham, M. (2003). Diagnosis, inspection, testing and repair of reinforced concrete structures. En: Newman, J., Choo, B. S. (Eds.), Advanced Concrete Technology , 2, 1-54.

NTE INEN 3121. (2016). Hormigón endurecido. Determinación del número de rebote. Método de ensayo. Disponible en http://www.normalizacion.gob.ec/wp-content/uploads/downloads/2017/04/nte_oficiales_nov_2016.pdf

Ott , R. L., Longnecker, M. T. (2016). An introduction to statistical methods and data analysis. (7th ed.), 1163 p. Boston, MA: Cengage Learning.

Proceq SA. (2014). The SilverSchmidt reference curve. (820 341 30S). Disponible en http://www.pcte.com.au/images/pdf/Silver%20Schmidt%20Hammer/The-SilverSchmidt-Reference-Curve.pdf

Ramírez, M. (2003). Hidrología aplicada. Universidad de Los Andes, Mérida, Venezuela.

Published

2017-12-30

How to Cite

Segarra, M., Miguitama, B., Fierro, J., & Mogrovejo, D. (2017). Implementación de curvas de calibración esclerométricas para hormigones convencionales de las hormigoneras más importantes del Austro. Maskana, 8(1), 229–238. Retrieved from https://publicaciones.ucuenca.edu.ec/ojs/index.php/maskana/article/view/1982

Issue

Section

II Congress Civil Engineering, Biosciences and Urbanism Sciences