Experimentos computacionales con métodos lineales en el reconocimiento taxonómico de insectos

Authors

Keywords:

taxonomy, spectral decomposition, recognition, morphometrics, PCA, LDA, LPP, SRDA

Abstract

Object recognition methods are applied for taxonomic classification by extracting characteristic information of insect wing images. We analysed wing images of two insect groups (Hemiptera: Triatominae and Ceratopogonidae: Culicoides) and different taxonomic levels (genus, subgenus and species). Instead of using a traditional method such as geometric morphometry, which requires the prior digitization of coordinates that explain the wing geometry, we processed the complete noisy images using lineal methods. Our results show that methods based on supervised training achieve, on average, the same outcome as the traditional method, which indeed suggests that the entire wing structure has relevant taxonomic information.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Bartlett, M. S. (2001). Independent Component Representations for Face Recognition BT - Face Image Analysis by Unsupervised Learning. In M. S. Bartlett (Ed.) (pp. 39-67). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4615-1637-8_3

Belhumeur, P., Hespanha, J., Kriegman, D. (1997). Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 711–720. https://doi.org/10.1109/34.598228

Bledsoe, W. W. (1966). The model method in facial recognition. Panoramic Research Inc., Palo Alto, CA, Rep. PR1, 15, 47.

Bruce, V. (1988). Recognising faces. Essays in cognitive psychology. Hillsdale, NJ: Lawrence Erlbaum Associates.

Cai, D., He, X., Han, J. (2007). Spectral Regression: A Unified Approach for Sparse Subspace Learning. In Seventh IEEE International Conference on Data Mining (ICDM 2007) (pp. 73-82). https://doi.org/10.1109/ICDM.2007.89

Cai, D., He, X., Han, J. (2008). SRDA: An efficient algorithm for large-scale discriminant analysis. IEEE Transactions on Knowledge and Data Engineering, 20(1), 1-12.

Chellappa, R., Wilson, C. L., Sirohey, S. (1995). Human and machine recognition of faces: a survey. Proceedings of the IEEE, 83(5), 705–741. https://doi.org/10.1109/5.381842

Chung, F. R. K. (1997). Spectral graph theory. American Mathematical Soc.

Coomans, D., Massart, D. L. (1982). Alternative k-nearest neighbour rules in supervised pattern recognition: Part 1. k-Nearest neighbour classification by using alternative voting rules. Analytica Chimica Acta, 136, 15-27.

de Carvalho, M. R., Bockmann, F. A., Amorim, D. S., Brandão, C. R. F. (2008). Systematics must Embrace Comparative Biology and Evolution, not Speed and Automation. Evolutionary Biology, 35(2), 150–157. https://doi.org/10.1007/s11692-008-9018-7

Favret, C., Sieracki, J. (2015). Machine vision automated species identification scaled towards production levels. Systematic Entomology, 41(1), 133–143. https://doi.org/10.1111/syen.12146

He, X., Niyogi, P. (2004). Locality Preserving Projections. In: Thrun, S., Saul,L. K., Schölkopf, B. (Eds.), Advances in Neural Information Processing Systems 16 (pp. 153–160). MIT Press. Retrieved from http://papers.nips.cc/paper/2359-locality-preserving-projections.pdf

He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.-J. (2005). Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(3), 328-340. https://doi.org/10.1109/TPAMI.2005.55

Linsker, R. (1988). Self-organization in a perceptual network. Computer, 21(3), 105-117.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (Vol. 1, pp. 281-297).

Martineau, M., Conte, D., Raveaux, R., Arnault, I., Munier, D., Venturini, G. (2017). A Survey on Image-based Insect Classification. Pattern Recogn., 65(C), 273-284. https://doi.org/10.1016/j.patcog.2016.12.020

Published

2017-12-30

How to Cite

Ochoa-Tocachi, D. R., Liria, J., Gualapuro, M., Soto-Vivas, A., & Mendoza, D. E. (2017). Experimentos computacionales con métodos lineales en el reconocimiento taxonómico de insectos. Maskana, 8(1), 413–420. Retrieved from https://publicaciones.ucuenca.edu.ec/ojs/index.php/maskana/article/view/2002

Issue

Section

Second Congress of Signal Processing, Communications and Pattern Recognition