Evaluation of infilling methods for time series of daily precipitation and temperature: The case of the Ecuadorian Andes

Authors

  • Lenin Campozano Departamento de Recursos Hídricos y Ciencias Ambientales, Universidad de Cuenca, Cuenca, Ecuador.Laboratory for Climatology and Remote Sensing (LCRS), Faculty of Geography, University of Marburg, Deutschhausstraße 10, D-35032 Marburg, Germany.
  • Esteban Sánchez Departamento de Recursos Hídricos y Ciencias Ambientales, Universidad de Cuenca, Cuenca, Ecuador.Facultad de Ingeniería, Universidad de Cuenca, Av. 12 de Abril s/n, Cuenca, Ecuador.
  • Álex Avilés Departamento de Recursos Hídricos y Ciencias Ambientales, Universidad de Cuenca, Cuenca, Ecuador.Facultad de Ciencias Químicas, Escuela de Ingeniería Ambiental, Universidad de Cuenca, Av. 12 de Abril s/n, Cuenca, Ecuador.
  • Esteban Samaniego Departamento de Recursos Hídricos y Ciencias Ambientales, Universidad de Cuenca, Cuenca, Ecuador.Facultad de Ingeniería, Universidad de Cuenca, Av. 12 de Abril s/n, Cuenca, Ecuador.

DOI:

https://doi.org/10.18537/mskn.05.01.07

Keywords:

infilling, deterministic infill methods, time series, daily rainfall, mean daily temperature, Andean Paute river basin

Abstract

Continuous time series of precipitation and temperature considerably facilitate and improve the calibration and validation of climate and hydrologic models, used inter alia for the planning and management of earth’s water resources and for the prognosis of the possible effects of climate change on the rainfall-runoff regime of basins. The goodness-of-fit of models is among other factors dependent from the completeness of the time series data. Particular in developing countries gaps in time series data are very common. Since gaps can severely compromise data utility this research with application to the Andean Paute river basin examines the performance of 17 deterministic infill methods for completing time series of daily precipitation and mean temperature. Although sophisticated approaches for infilling gaps, such as stochastic or artificial intelligence methods exist, preference in this study was given to deterministic approaches for their robustness, easiness of implementation and computational efficiency. Results reveal that for the infilling of daily precipitation time series the weighted multiple linear regression method outperforms due to considering the ratio of the Pearson correlation coefficient to the distance, giving more weight to both, highly correlated and nearby stations. For mean temperature, the climatological mean of the day was clearly the best method, most likely due to the scarcity of weather stations measuring temperature, and because the few available stations are located at different elevations in the landscape, suggesting the need to address in future studies the impact of elevation on the interpolation.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abatzoglou, J.T., K.T. Redmond, L.M. Edwards, 2009. Classification of regional climate variability in the State of California. J. Appl. Meteorol. Clim., 48(8), 1527-1541.

Adeloye, A.J., 1996. An opportunity loss model for estimating value of streamflow data for reservoir planning. Water Resour. Manag., 10(1), 45-79.

Adeloye, A.J., 2011. In: Proceedings of the Symposium HS03 - Risk in Water Resources Management, Melbourne, Australia, IAHS 347, pp. 121-126.

Aguilar, E., I. Auer, M. Brunet, T.C. Peterson, J. Wieringa, 2003. Guidelines on climate metadata and homogenization. World Meteorological Organization, WMO/TD No. 1186, 55 pp. Downloaded from http://www.wmo.int/pages/prog/wcp/wcdmp/documents/ WCDMP-53.pdf in December 2012.

Ashraf, M., J.C. Loftis, K.G. Hubbard, 1997. Application of geostatistics to evaluate partial weather station networks. Agric. For. Meteorol., 84(3-4), 255-271.

Baddour, O., H. Kontongomde (Eds.), 2007. The role of climatological normals in a changing climate. World Climate Data Monitoring Program, World Meteorological Organization, 46 pp. Downloaded from http://www.wmo.int/datastat/documents/WCDMPNo61_1.pdf in October 2012.

Bendix, J., W. Lauer, 1992.: Die Niederschlagsjahreszeiten in Ecuador und ihre klimadynamische Interpretation. Erdkunde, 46, 118-134.

Beauchamp, J.J., D.J. Dowing, S.F. Railsback, 1989. Comparison of regression and time-series methods for synthesizing missing streamflow records. Water Resour. Bull., 25, 961-975.

Bennett, N.D., L.T.H. Newham, B.F.W. Croke, A.J. Jakeman, 2007. Patching and disaccumulation of rainfall data for hydrological modelling. In: Oxley, L., D. Kulasiri (Eds.), Int. Congress on Modelling and Simulation (MODSIM 2007), Modelling and Simulation Society of Australia and New Zealand Inc., New Zealand, 2520-2526.

Celleri, R., P. Willems, W. Buytaert, J. Feyen, 2007. Space-time rainfall variability in the Paute basin, Ecuadorian Andes. Hydrol. Process., 21(24), 3316-3327.

Costa, A.C., A. Soares, 2008. Homogenization of climate data: Review and new perspectives using geostatistics. Math. Geosci., 41(3), 291-305.

Coulibaly, P., N.D. Evora, 2007. Comparison of neural network methods for infilling missing daily weather records. J. Hydrol., 341, 27-41.

Dawson, C.W., C. Harpham, R.L. Wilby, Y. Chen, 2002. Evaluation of artificial neural network techniques for flow forecasting in the River Yangtze, China. Hydrol. Earth Syst. Sci., 6(4), 619-626.

Demyanov, V., M. Kanevski, S. Chernov, E. Savelieva, V. Timonin, 1998. Neural network residual kriging application for climatic data. J. Geogr. Inf. Decis. Anal., 2, 215-232.

Di Piazza, A., F.L. Conti, L.V. Noto, F. Viola, G. La Loggia, 2011. Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for Sicily, Italy. Int. J. Appl. Earth Obs. Geoinf., 13, 396-408.

Dingman, S.L., 1994. Physical hydrology. Prentice Hall Englewood Cliffs, NJ, USA, 575 pp.

Diodato, N., M. Ceccarelli, 2005. Interpolation processes using multivariate geostatistics for mapping of climatological precipitation mean in the Sannio Mountains (southern Italy). Earth Surf. Process. Landf., 30, 259-268.

Dumedah, G., P. Coulibaly, 2011. Evaluation of statistical methods for infilling missing values in high-resolution soil moisture data. J. Hydrol., 400(1-2), 95-102.

Gould, P.G., A.B. Koehler, J.K. Ord, R.D. Snyder, R.J. Hyndman, F. Vahid-Araghi, 2008. Forecasting time series with multiple seasonal patterns. Eur. J. Oper. Res., 191, 207-222.

Gyau-Boake, P., G.A. Schultz, 1994. Filling gaps in runoff time series in West Africa. Hydrol. Sci. J., 39(4), 621-636.

Hanson, R.T., M.W. Newhouse, M.D. Dettinger, 2004. A methodology to assess relations between climatic variability and variations in hydrologic time series in the southwestern United States. J. Hydrol., 287, 252-269.

Harvey, C.L., H. Dixon, J. Hannaford, 2010. Developing best practice for infilling daily river flow data. British Hydrological Society, Third International Symposium, Managing Consequences of a Changing Global Environment, Newcastle, UK, 8 pp.

Ilunga, M., D. Stephenson, 2005. Infilling streamflow data using feed-forward back-propagation (BP) artificial neural networks: application of standard BP and Pseudo Mac Laurin power series BP techniques. Water SA, 31(2), 171-176.

Khalil, M., U.S. Panu, W.C. Lennox, 2001. Groups and neural networks based streamflow data infilling procedures. J. Hydrol., 241, 153-176.

Kim, J.-W., Y.A. Pachepsky, 2010. Reconstructing missing daily precipitation data using regression trees and artificial neural networks for SWAT streamflow simulation. J. Hydrol., 394, 305-314.

Kotsiantis, S., A. Kostoulas, S. Lykoudis, A. Argiriou, 2006. Filling missing temperature values in weather data banks. 2nd IEE International Conference on Intelligent Environments, Athens, Greece, 1, 327-334.

Laraque, A., J. Ronchail, G. Cochonneau, R. Pombosa, J.L. Guyot, 2007. Heterogeneous distribution of rainfall and discharge regimes in the Ecuadorian Amazon Basin. J. Hydrometeorol., 8(6), 1364-1381.

Mejia, R., D. Molinaro, G. Ontaneda, F. Rossel, 1996. Homogenización y regionalización de la pluviometria en la cuenca del río Paute. Serie INSEQ Vol. 3. Republica del Ecuador, Ministerio de Energía y Minas, INAMHI, ORSTOM, Quito, Ecuador.

Mileva-Boshkoska, B., M. Stankovski, 2007. Prediction of missing data for ozone concentrations using support vector machines and radial basis neural networks. Informatica, 50-52(31), 425-430.

Mwale, F.D., A.J. Adeloye, R. Rustum, 2012. Infilling of missing rainfall and streamflow data in the Shire River Basin, Malawi: A self organizing map approach. Phys. Chem. Earth, 50-52, 34-43.

Narapusetty, B., T. DelSole, M.K. Tippett, 2009. Optimal estimation of the climatological mean. J. Climate, 22, 4845-4859.

Ng, W.W., U.S. Panu, 2010. Infilling missing daily precipitation data at multiple sites using the multivariate truncated normal distribution model for weather generation. Water, 8 pp.

Ramos-Calzado, P., J. Gómez-Camacho, F. Pérez-Bernal, M.F. Pita-López, 2008. A novel approach to precipitation series completion in climatological datasets: Application to Andalusia. Int. J. Clim., 28, 1525-1534.

Rossel, F., E. Cadier, 2009. El Niño and prediction of anomalous monthly rainfalls in Ecuador. Hydrol. Process., 23(22), 3253-3260.

Salazar, G., H. Rudnick, 2008. Hydro Power plants in Ecuador: A technical and economical analysis. Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, IEEE. Pittsburg, PA, USA, 5 pp.

Teegavarapu, R.S., V. Chandramouli, 2005. Improved weighting methods, deterministic and stochastic data-driven models for estimation of missing precipitation records. J. Hydrol. 312, 191-206.

Teegavarapu, R.S.V., M. Tufail, L. Ormsbee, 2009. Optimal functional forms for estimation of missing precipitation data. J. Hydrol., 374, 106-115.

Vasiliev, I.R., 1996. Visualization of spatial dependence: An elementary view of spatial autocorrelation. In: Arlinghaus, S.L. (Ed.), Practical Handbook of Spatial Statistics, CRC Press, Boca Raton, Florida, USA, 17-3.

Villazón, M., P. Willems, 2010. Filling gaps and daily disaccumulation of precipitation data for rainfall-runoff model. Proc. 4th Int. Sci. Conf. BALWOI 2010 on Water Observation and Information Systems for Decision Support, Rep. Macedonia, 9 pp.Wagner, P.D., P. Fiener, F. Wilken, S. Kumar, K. Schneider, 2012. Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scarce regions. J. Hydrol., 464-465, 388-400.

Wan, H., X.L. Wang, V.R. Swail, 2010. Homogenization and trend analysis of Canadian near-surface wind speeds. J. Climate, 23, 1209-1225.

Wang, X.L., Q. H. Wen, Y. Wu, 2007: Penalized maximal t test for detecting undocumented mean change in climate data series. J. Appl. Meteor. Climatol., 46 (6), 916-931.

Wang, X.L., 2008a. Accounting for autocorrelation in detecting mean-shifts in climate data series using the penalized maximal t or F test. J. Appl. Meteor. Climatol., 47, 2423-2444.

Wang, X.L., 2008b. Penalized maximal F-test for detecting undocumented mean-shifts without trend-change. J. Atmos. Oceanic Technol., 25(3), 368-384.

Xia, Y., P. Fabian, A. Stohl, M. Winterhalter, 1999. Forest climatology: Estimation of missing values for Bavaria, Germany. Agric. For. Meteorol., 96, 131-144.

Yozgatligil, C., S. Aslan, C. Iyigun, I. Batmaz, 2013. Comparison of missing value imputation methods in time series: the case of Turkish meteorological data. Theor. Appl. Climatol., 112, 143-167.

Downloads

Published

2014-06-25

How to Cite

Campozano, L., Sánchez, E., Avilés, Álex, & Samaniego, E. (2014). Evaluation of infilling methods for time series of daily precipitation and temperature: The case of the Ecuadorian Andes. Maskana, 5(1), 99–115. https://doi.org/10.18537/mskn.05.01.07

Issue

Section

Research articles

Most read articles by the same author(s)