Caracterización de series RR de pruebas de esfuerzo: Pre-condicionamiento isquémico

Authors

Keywords:

RR time series, stress test, ECG, NN, multilayer perceptron

Abstract

A stress test is a cardiovascular stimulation test performed on a treadmill or bicycle monitoring the electrocardiogram. In this paper we evaluate a characterization scheme of the heart rate time series (RR time series) on an ECG database of Ischemic Preconditioning (IP). Four categories were defined: Very Good, Good, Low Quality and Useless. The methodology consists in dividing the RR series into windows and using the standard deviation of each window as the inputs of a multi-layer perceptron-type neural network. The results give a coincidence index (IC) of 63.87% with respect to manual annotations of the signals. These findings validate the characterization scheme of RR time series of effort based on the architecture of the neural network and stimulate its use for the characterization of others ECG stress test databases.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Armijos, J., García, D., Astudillo, D., Palacio-Baus, K., Medina, R., Wong, S. (2015). Semiautomatic validation of RR time series in an ECG stress test database. 11th International Symposium on Medical Information Processing and Analysis, 9681, 19 p. https://doi.org/10.1117/12.2214314

Astudillo-Salinas, F., Palacio-Baus, K., Solano-Quinde, L., Medina, R., Wong, S. (2016). Characterizing artifacts in RR stress test time series. IEEE Annual Conference on Engineering in Medicine and Biology Society, pp. 692-695. https://doi.org/10.1109/EMBC.2016.7590796

Baldeón, M. J., Coronel, C. A. (2012). Plan maestro de seguridad Informática para la UTIC de la ESPE con lineamientos de la Norma ISO/IEC 27002. Maestría Gerencia de Sistemas. ESPE. Sede Sangolquí.

Kloner, R., Derek, Y. (1994). Does ischemic preconditioning occur in patients? Journal of the American College of Cardiology, 24(4), 1133-1142.

Lanzarini, L., Galván, I. (2004). Redes neuronales artificiales. Un enfoque práctico. Journal of Computer Science & Technology, 4(2), 122-123.

Ledezma, C. A., Severeyn, E., Perpiñán, G., Altuve, M., Wong, S. (2014). A new on-line electrocardiographic records database and computer routines for data analysis. IEEE Annual International Conference on Engineering in Medicine and Biology Society. pp. 2738-2741. https://doi.org/10.1109/EMBC.2014.6944189

Malik, M. (1996). Heart rate variability. Annals of Noninvasive Electrocardiology, 1(2), 151-181. https://doi.org/10.1111/j.1542-474X.1996.tb00275.x

Ng, F., Wong, S., Almeida, D., Mora, F., Passariello, G. (1996). Stress ECG signal analysis to detect evidence of ischemic preconditioning. IEEE 18th Annual International Conference on Engineering in Medicine and Biology Society, 4, 1435-1436. https://doi.org/10.1109/IEMBS.1996.647492

Pan, J., Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering, BME-32(3), 230-236. https://doi.org/10.1109/TBME.1985.325532

Sieira, M., Ricart, A., Estrany, R. (2010). Respuesta de la tensión arterial a la prueba de esfuerzo. Apunts. Medicina de L’Esport, 45(167), 191-200. https://doi.org/10.1016/j.apunts.2010.01.005

Published

2018-12-30

How to Cite

Farfán, Ángel, Guachun, X., Idrovo, J., Jaramillo, W., & Wong, S. (2018). Caracterización de series RR de pruebas de esfuerzo: Pre-condicionamiento isquémico. Maskana, 8(1), 373–378. Retrieved from https://publicaciones.ucuenca.edu.ec/ojs/index.php/maskana/article/view/1996

Issue

Section

Second Congress of Signal Processing, Communications and Pattern Recognition

Most read articles by the same author(s)