Caracterización de series RR de pruebas de esfuerzo: Pre-condicionamiento isquémico
Keywords:
RR time series, stress test, ECG, NN, multilayer perceptronAbstract
A stress test is a cardiovascular stimulation test performed on a treadmill or bicycle monitoring the electrocardiogram. In this paper we evaluate a characterization scheme of the heart rate time series (RR time series) on an ECG database of Ischemic Preconditioning (IP). Four categories were defined: Very Good, Good, Low Quality and Useless. The methodology consists in dividing the RR series into windows and using the standard deviation of each window as the inputs of a multi-layer perceptron-type neural network. The results give a coincidence index (IC) of 63.87% with respect to manual annotations of the signals. These findings validate the characterization scheme of RR time series of effort based on the architecture of the neural network and stimulate its use for the characterization of others ECG stress test databases.
Downloads
Metrics
References
Armijos, J., García, D., Astudillo, D., Palacio-Baus, K., Medina, R., Wong, S. (2015). Semiautomatic validation of RR time series in an ECG stress test database. 11th International Symposium on Medical Information Processing and Analysis, 9681, 19 p. https://doi.org/10.1117/12.2214314
Astudillo-Salinas, F., Palacio-Baus, K., Solano-Quinde, L., Medina, R., Wong, S. (2016). Characterizing artifacts in RR stress test time series. IEEE Annual Conference on Engineering in Medicine and Biology Society, pp. 692-695. https://doi.org/10.1109/EMBC.2016.7590796
Baldeón, M. J., Coronel, C. A. (2012). Plan maestro de seguridad Informática para la UTIC de la ESPE con lineamientos de la Norma ISO/IEC 27002. Maestría Gerencia de Sistemas. ESPE. Sede Sangolquí.
Kloner, R., Derek, Y. (1994). Does ischemic preconditioning occur in patients? Journal of the American College of Cardiology, 24(4), 1133-1142.
Lanzarini, L., Galván, I. (2004). Redes neuronales artificiales. Un enfoque práctico. Journal of Computer Science & Technology, 4(2), 122-123.
Ledezma, C. A., Severeyn, E., Perpiñán, G., Altuve, M., Wong, S. (2014). A new on-line electrocardiographic records database and computer routines for data analysis. IEEE Annual International Conference on Engineering in Medicine and Biology Society. pp. 2738-2741. https://doi.org/10.1109/EMBC.2014.6944189
Malik, M. (1996). Heart rate variability. Annals of Noninvasive Electrocardiology, 1(2), 151-181. https://doi.org/10.1111/j.1542-474X.1996.tb00275.x
Ng, F., Wong, S., Almeida, D., Mora, F., Passariello, G. (1996). Stress ECG signal analysis to detect evidence of ischemic preconditioning. IEEE 18th Annual International Conference on Engineering in Medicine and Biology Society, 4, 1435-1436. https://doi.org/10.1109/IEMBS.1996.647492
Pan, J., Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering, BME-32(3), 230-236. https://doi.org/10.1109/TBME.1985.325532
Sieira, M., Ricart, A., Estrany, R. (2010). Respuesta de la tensión arterial a la prueba de esfuerzo. Apunts. Medicina de L’Esport, 45(167), 191-200. https://doi.org/10.1016/j.apunts.2010.01.005
Downloads
Published
How to Cite
Issue
Section
License
Copyright © Autors. Creative Commons Attribution 4.0 License. for any article submitted from 6 June 2017 onwards. For manuscripts submitted before, the CC BY 3.0 License was used.
You are free to:
Share — copy and redistribute the material in any medium or format |
Adapt — remix, transform, and build upon the material for any purpose, even commercially. |
Under the following conditions:
Attribution — You must give appropriate credit, provide a link to the licence, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licenser endorses you or your use. |
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the licence permits. |