Analysis and risk assessment of arsenic in the water sources of the cities Cuenca and Azogues, Ecuador

Authors

  • Guillermina Pauta-Calle Departamento de Ingeniería Civil, Universidad de Cuenca, Cuenca, Ecuador.
  • María Velasco-Heras Instituto Ecuatoriano de Seguridad Social, Cuenca, Ecuador.
  • Gabriela Vázquez-Guillén Departamento de Ingeniería Civil, Universidad de Cuenca, Cuenca, Ecuador. https://orcid.org/0000-0002-8578-8014
  • Andrea Abril-Torres Departamento de Ingeniería Civil, Universidad de Cuenca, Cuenca, Ecuador.
  • Santiago Torres-Inga Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Cuenca, Ecuador. https://orcid.org/0000-0001-6379-4926

DOI:

https://doi.org/10.18537/mskn.12.02.08

Keywords:

Arsenic, water sources, river, groundwater, páramo, chronic toxicity

Abstract

Arsenic (As) is a toxic element present in the environment posing a threat to consumers health. To identify the arsenic content in rivers, páramos, and wells in the city of Cuenca, and in rivers in the city of Azogues, two monitoring campaigns in the period August-November 2017 were conducted, respectively during a low and high flow hydrological period. The measurements encompassed physicochemical quality indicators such as pH, color, turbidity, and conductivity. Results show that the páramos and wells are free of As, while this toxic substance is present in surface water with higher levels in periods of high flow. A significant association between the concentration of As and the pH of river water was found. The risk of chronic toxicity from consumption is almost non-existent because the observed As levels exceed only exceptionally the permissible limit established by the Ecuadorian TULSMA (Unified Text of Secondary Environmental Legislation) regulation. The presence of As in surface water is the result of anthropological activities such as the use of pesticides. A permanent monitoring of the quality of water resources for human consumption is necessary, particularly in the rainy season, due to the diffuse and difficult to control pollution processes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Arias, M. C. (2016). Polimorfismo rs699780 del gen NOTCH2 como factor proinflamatorio y su asociación con diabetes tipo 2 en sujetos expuestos a agua contaminada con arsénico. Tesis de maestría en Ciencias de la Salud. Durango, México: Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango.

Bundschub, J. Pérez, A., & Litter, M. (2008). Distribución del arsénico en las regiones Ibérica e Iberoamericana. Buenos Aires, Argentina: Editorial CYTED.

Calvo Revuelta, C., Álvarez-Benedí, J., Andrade Benítez, M., Marinero Diez, P., & Bolado Rodríguez, S. (2003). Contaminación por arsénico en aguas subterráneas en la provincia de Valladolid: Variaciones estacionales. Estudios de la Zona No Saturada del Suelo, Vol. VI., pp. 8. Available at http://www.zonanosaturada.com/zns03/publications_files/p091-098.pdf.

Carbantes, A., & De Fernicola, N. (2003). Arsénico en el agua de bebida: un problema de salud pública. Revista Brasileira de Ciencias Farmacéuticas, 39(4), 365-372.

Castro, M. L. (2004). Presencia de arsénico en el agua de bebida en América Latina y su efecto en la salud pública. HDT - CEPIS N 95, 12 p. Available at ingenieroambiental.com/4014/hdt95.pdf

COPEA. (2014). El impacto de la minería canadiense en América Latina y la responsabilidad de Canadá. pp. 126. Available at http://www.copaeguatemala.org/pdf/informes/Sedimentos.pdf

Delgado, J., Medina, J., Vega, M., Carretero, C., & Pardo, R. (2009). Los minerales de la arcilla y el arsénico en los acuíferos de la Tierra de Pinares, Valladolid. Revista de la Sociedad Española de Mineralogía (Macla), 11; 75-76.

ELIKA. (2013). Arsénico. España: Fundación Vasca para la seguridad agroalimentaria. Available at https://seguridadalimentaria.elika.eus/wp-content/uploads/2018/01/27.Ars%C3%A9nico.pdf

Galindo, G., Fernández, J., Parada, M., & Gimeno, D. (2005). Arsénico en aguas: origen, movilidad y tratamiento. Rio Cuarto, Argentina: IV Congreso Hidrogeologico. Available at https://digital.csic.es/ bitstream/10261/4019/1/Galindo_et_al-Arsenico-2005.pdf

García, E., Carrizales, L., Juárez, L., García, E., Hernández, E., Briones, E., & Vázquez, O. (2011). Plomo y arsénico en la subcuenca del Alto Atoyac en Tlaxcala, México. Revista Chapingo, Serie Ciencias Forestales y del Ambiente, 17(1), 7-17. https://doi.org/10.5154/r.rchscfa.2010.06.040

Genc, H., Tjell, J. C., McConchie, D., & Schuilling, O. (2003). Adsorption of arsenate from water using neutralized red mud. Journal of Colloid and Interface Science, 264(2), 327-334. https://doi.org/10.1016/S0021-9797(03)00447-8

González-Váldez, L., Quintos-Escalante, M., Reyes-Navarrete, M.-G. R., Alarcón, E. C. V., Alvarado, A.-I., Antuna, D.-M., García-Vargas, A., Jaques-Matas, V., & Orona-Meza, F. (2011). Efectos a la salud por la ingesta crónica de arsénico en agua. Vidsupra: Visión Científica, 3(2), 24–28.

IARC. (2018). Agents Classified by the IARC Monographs, Volumes 1-12. International Agency for Research on Cancer. Available at https://monographs.iarc.fr/agents-classified-by-the-iarc/

Lillo, J. (2008). Peligros geoquímicos: arsénico de origen natural en las aguas. GEMM, 2-3, 33.

Machado, I., Bühl, V., Mañay, N. (2019). Total arsenic and inorganic arsenic speciation in groundwater intended for human consumption in Uruguay: Correlation with fluoride, iron, manganese and sulfate. Journal Science of the Total Environment, 681(1), 497-502. https://doi.org/10.1016/j.scitotenv.2019.05.107

Mañay, N., Pistón, M., Cáceres, M., Pizzorno, P., & Bühl, V. (2019). An overview of environmental arsenic issues and exposure risks in Uruguay. Journal Science of the Total Environment, 686, 590-598. https://doi.org/10.1016/j.scitotenv.2019.05.443

Markowski, V. P., Currie, D., Reeve, E. A., Thompson, D., & Wise, J. P. (2010). Tissue‐specific and dose‐related accumulation of arsenic in mouse offspring following maternal consumption of arsenic‐contaminated water. Basic & Clinical Pharmacology & Toxicology, 108, 326-332. https://doi.org/10.1111/j.1742-7843.2010.00660.x

Mayorga, M. (2013). Arsénico en aguas subterráneas su transferencia al suelo y a la planta. Tesis doctoral. Universidad de Valladolid. Escuela Universitaria Ingenierías Agrarias, Departamento Producción Vegetal y Recursos Forestales. Instituto de Recursos Naturales y Agrobiología de Salamanca-CSIC. pp. 59.

Mejía, M., González, I., Briones, J., Cardona, A., & Soto, P. (2014). Mecanismos que liberan arsénico al agua subterránea de la Comarca Lagunera, estados de Coahuila y Durango, México. Revista Tecnologías y Ciencias del Agua, 5(1), 71-82.

Moreno, M. D. (2003). Toxicología ambiental: Evaluación del riesgo para la salud humana. (1ª ed.). España: McGraw-Hill Interamericana de España.

Ng, J. C., Wang, J., & Shraim, A. (2003). A global health problem caused by arsenic from natural sources. Chemosphere, 52(9), 1353-1359. https://doi.org/10.1016/S0045-6535(03)00470-3

Pauta, G. (2014). Estudio integral de la calidad de agua del Río Burgay, y evaluación del riesgo toxicológico por la probable presencia de plaguicidas. Tesis de Maestria en Toxicologia Industrial y Ambiental, Universidad de Cuenca. pp. 163. Available at http://dspace.ucuenca.edu.ec/handle/123456789/19831

Pesántez, C. (2017). Identificación del impacto producido por la minería en Quimsacocha en la recarga de aguas superficiales y subterráneas. Tesis de Pregrado, pp. 66. Universidad de Cuenca. Available at http://dspace.ucuenca.edu.ec/handle/ 123456789/28492

Ramírez, A. V. (2013). Exposición ocupacional y ambiental al arsénico. Anales de la Facultad de Medicina, 47(3), 237-247.

Richter, L.,Hechavarría, A., Pessôa, G., Zezzi, M. A., Rezende-Filho, A. T., Bartimann, R., Menezes, H. A., Richter, L.,Hechavarría, A., Pessôa, G., Zezzi, M. A., Rezende-Filho, A. T., Bartimann, R., Menezes, H. A., Valles, V., Barbiero, L., & Fostier, A-H. (2019). Dissolved arsenic in the upper Paraguay River basin and Pantanal wetlands. Journal Science of the Total Environment, 687, 919-928. https://doi.org/10.1016/j.scitotenv.2019.06.147

Salomón, M., Guamán, C., Rubio, C., Galárraga, R., & Abraham, E. (2008). Indicadores del uso del agua en una zona de los Andes Centrales de Ecuador. Estudio de la cuenca del Río Ambato. Ecosistemas, 17(1),

-85.

Shi, F. (2004). Arsenic in groundwater in Huhhot alluvial basin in Inner Mongolia, Peoples Republic of China. Master thesis, pp. 57. Stockholm, Sweden: Royal Institute of Technology.

Souza, T. D., Borges, A. C., Braga, A. F., Veloso, R. W., & Matos, A. T. (2019). Phytoremediation of arsenic-contaminated water by Lemna Valdiviana: An optimization study. Chemosphere, 234, 402-408. https://doi.org/10.1016/j.chemosphere.2019.06.004

WHO. (2011). Arsenic in drinking-water. Guidelines for drinking-water quality. 24 p. Geneva, Switzerland: World Health Organization. Available at https://www.who.int/water_sanitation_ health/dwq/chemicals/arsenic.pdf

WHO. (2018). Arsenic. Available at https://www.who.int/news-room/fact-sheets/detail/arsenic

Published

2021-12-24

How to Cite

Pauta-Calle, G., Velasco-Heras, M., Vázquez-Guillén, G., Abril-Torres, A. ., & Torres-Inga, S. (2021). Analysis and risk assessment of arsenic in the water sources of the cities Cuenca and Azogues, Ecuador. Maskana, 12(2), 71–79. https://doi.org/10.18537/mskn.12.02.08

Issue

Section

Research articles

Most read articles by the same author(s)