Plataforma para la búsqueda por contenido visual y semántico de imágenes médicas

Autores/as

  • Alexandra La Cruz Universidad de Cuenca
  • Andrés Tello
  • Mauricio Espinoza
  • Victor Saquicela
  • Patricia González
  • Yoredy Sarmiento
  • Washintong Ramírez-Montalvan
  • Lizandro Solano-Quinde
  • María-Esther Vidal

Resumen

RESUMEN
Este trabajo describe una plataforma que permite automatizar el proceso de anotación semántica sobre imágenes médicas, sin depender de la ontología utilizada. Las anotaciones automáticas se realizan mediante: (a) un proceso de conversión de imágenes médicas DICOM (RDF-ización) al formato RDF; (b) la integración de diferentes ontologías biomédicas, a través de la correspondencia de distintas ontologías biomédicas a los datos DICOM; haciendo la herramienta independiente de la ontología; (c) la segmentación y visualización de los datos anotados, se utiliza además para generar nuevas anotaciones de acuerdo al conocimiento del experto, permitiendo así validar las anotaciones. Aplicando además técnicas de recuperación de imágenes basadas en su contenido visual, hace posible la recuperación de imágenes médicas por similitud de características inherentes a las imágenes. Esta plataforma está siendo construida sobre una arquitectura distribuida, la cual permite optimizar la forma de clasificación, distribución y búsqueda por contenido visual y semántico de las imágenes.
Palabras clave: Ontologías médicas, visualizador 3D basado en Web, segmentación, anotaciones semánticas.
ABSTRACT
This paper present a framework ontology-independent for the automatic semantic annotation of medical images. The automatic annotation is done by (a) semantifying of DICOM medical images (RDF-ization) automatically; (b) Integration of different biomedical ontologies, through the matching process between ontologies and DICOM metadata, making this approach ontology-independent; (c) segmentation and visualization of annotated data which is further used to generate new annotations according to expert knowledge, and validation. Additionally applying context based image retrieval, make possible the retrieval of medical imaging by similarity of images features. This platform is being built on a distributed architecture, which improve the way of classification, distribution and searching on image repository.
Keywords: Ontology biomedical, Web 3D-visualizer, segmentation, semantic annotations.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Bay, H., A. Ess, T. Tuytelaars, L. Van Gool, 2008. Speeded-up robust features (surf). Comput. Vis. Image Underst., 110(3), 346-359.

Beucher, S., C. Lantuejoul, 1979. Use of watersheds in contour detection. In: International Workshop on Image Processing: Real time edge and motion detection estimation. Disponible en http://cmm.ensmp.fr/~beucher/publi/watershed.pdf, 12 pp.

Chabane, Y., L. d’Orazio, L. Gruenwald, B. Mohamad, C. Rey, 2013. Medical data management in the syseo project. ACM SIGMOD Record, 42(3), 48-53.

Giordano, D., C. Pino, C. Spampinato, M. Fargetta, A. Di Stefano, 2013. A semantic-based platform for medical image storage and sharing using the grid. In: Biomedical Engineering Systems and Technologies, Vol. 273, pp. 353-364. Springer Link.

Kumar, R.M., K, Sreekumar, 2014. A survey on image feature descriptors. International Journal of Computer Science and Information Technologies, 5(6), 7668-7673. Disponible en http://www.ijcsit.com/docs/Volume%205/vol5issue06/ijcsit20140506168.pdf.

La Cruz, A., A. Baranya, M-E. Vidal, 2013. Medical image rendering and description driven by semantic annotations. In: Resource Discovery, Vol. 8194 of Lecture Notes in Computer Science, pp. 123-149. Berlin Heidelberg: Springer Verlag.

Lambrix, P., H. Tan, 2006. Sambo - a system for aligning and merging biomedical ontologies. Journal of Web Semantics, 4, 206.

Lipscomb, C.E., 2000. Medical subject headings (mesh). Bull Med Libr Assoc., 88(3), 265-266.

Lowe, D.G., 2004. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91-110.

Möller, M., P. Ernst, M. Sintek, S. Seifert, G. Grimnes, A. Cavallaro, A. Dengel, 2006. Combining patient metadata extraction and automatic image parsing for the generation of an anatomic atlas. Vol. 6276 of Lecture Notes in Computer Science, Knowledge-Based and Intelligent Information and Engineering Systems. Springer Link.

Möller, M., S. Mukherjee, 2009. Context-driven ontological annotations in dicom images towards semantic pacs. In: HEALTHINF, pp. 294-299.

Pérez, W., A. Tello, V. Saquicela, M-E. Vidal, A. La Cruz, 2015. An automatic method for the enrichment of dicom metadata using biomedical ontologies. In: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society Biomedical Enginnering: A bridge to improve the quality on health care and the quality of life, pp. 2551-2554.

Rosse, C., A. Kumar, J.L.V. Mejino Jr., D.L. Cook, L.T. Detwiler, B. Smith, 2005. A strategy for improving and integrating biomedical ontologies. AMIA Annu. Symp. Proc., 639-643.

Rosse, C., J.L.V. Mejino, 2008. The foundational model of anatomy ontology. Anatomy Ontologies for Bioinformatics, Vol. 6 of the series Computational Biology, pp. 59-117.

Rosten, E., T. Drummond, 2006. Machine learning for high-speed corner detection. In: Computer Vision-ECCV, pp. 430-443. Berlin Heidelberg: Springer Verlag.

Rublee, E., V. Rabaud, K. Konolige, G. Bradski, 2011. Orb: An efficient alternative to sift or surf. In: IEEE International Conference on Computer Vision (ICCV), pp. 2564-2571.

Descargas

Publicado

2015-12-04

Cómo citar

La Cruz, A., Tello, A., Espinoza, M., Saquicela, V., González, P., Sarmiento, Y., Ramírez-Montalvan, W., Solano-Quinde, L., & Vidal, M.-E. (2015). Plataforma para la búsqueda por contenido visual y semántico de imágenes médicas. Maskana, 6(Supl.), 13–20. Recuperado a partir de https://publicaciones.ucuenca.edu.ec/ojs/index.php/maskana/article/view/693

Artículos más leídos del mismo autor/a

> >>