Reconocimiento de caracteres del alfabeto dactilológico mediante redes neuronales artificiales: Un enfoque experimental
Abstract
RESUMEN
En este artículo se presenta el desarrollo de un sistema orientado a facilitar la comunicación de aquellas personas con discapacidad auditiva, del habla o ambas; y que se ven obligados a utilizar otras formas de comunicación como el uso del lenguaje de señas. Para solventar el problema de comprensión de este lenguaje, se propone un enfoque experimental de reconocimiento de caracteres del alfabeto dactilológico mediante la adquisición y procesamiento de imágenes digitales, y la aplicación de un clasificador basado Redes Neuronales Artificiales (RNA).
Palabras clave: Dactilología, lenguaje de señas, Redes Neuronales Artificiales, clasificador.
ABSTRACT
This article presents the development of a system aimed to aid people with speech and/or communication disabilities, who must use the sign language and the dactilologic alphabet in order to transmit their ideas. To assist others in understanding such language, we present an experimental approach for sign language characters recognition through digital image acquisition and processing techniques and the use of a Neural Network based classifier.
Keywords: Dactylology, sign language, Artificial Neural Networks, classifier.
Downloads
Metrics
References
Dirección de Investigación de la Universidad de Cuenca, 2014. Directrices para la elaboración de artículos científicos. Revista MASKANA. DIUC, Universidad de Cuenca.
Hecht-Nielsen, R., 1989. Theory of the backpropagation neural network. Neural Networks, IJCNN, International Joint Conference on, IEEE, 593-605.
Heng, D., T. TszHang, 2012. Hand Gesture Recognition Using Kinect. Software Engineering and Service Science (ICSESS), IEEE 3rd International Conference on, 196-199.
Incertis, I., J. Garcia-Bermejo, E. Casanova, 2006. Hand Gesture Recognition for Deaf People Interfacing. Pattern Recognition, ICPR, 18th International Conference on, Vol.2, IEEE, 100-103.
Jones, A.S., 1999. On the Complexity of Computing. Advances in Computer Science, 555-566.
Knuth, D.E., 1984. The Text Book. Publisher: Addison-Wesley.
Otsu, N., 1979. A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man and Cybernetics, 62-66.
Priego-Perez, F., 2012. Reconocimiento de Imáenes del Lenguaje de Señas Mexicano. Tesis de Maestría en Ciencias de la Computación, Insituto Politécnico Nacional, Centro de Investigación en Computación, México.
Razo-Gil, L., G. Salvador-Calderon, R. Barrón-Fernández, 2009. Sistema Traductor Para el Reconocimiento del Alfabeto Dactilológico. CIC-IPN: Centro de Investigación en Computación, Laboratorio Inteligencia Artificial.
Renault, R.B., 1991. 3D Hierarchies for Animation. John Wiley & Sons Ltd.
Wah Ng, C., S. Ranganath, 2002. Real-time gesture recognition system and application. Image and Vision Computing, 20(13), 993-1007.
Zurada, J.M., 1992. Artificial Neural Systems. West Publishing Company.
Downloads
Published
How to Cite
Issue
Section
License
Copyright © Autors. Creative Commons Attribution 4.0 License. for any article submitted from 6 June 2017 onwards. For manuscripts submitted before, the CC BY 3.0 License was used.
You are free to:
Share — copy and redistribute the material in any medium or format |
Adapt — remix, transform, and build upon the material for any purpose, even commercially. |
Under the following conditions:
Attribution — You must give appropriate credit, provide a link to the licence, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licenser endorses you or your use. |
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the licence permits. |