Bibliomining: Aplicación de text mining para descubrir preferencias de usuarios en el Centro de Documentación Regional “Juan Bautista Vázquez”
Abstract
ABSTRACT
Nowadays, the management of huge volumes of information in support of administrative decisions is one of the challenges libraries face. An aid thereby are text mining techniques enabling the extraction of hidden knowledge. The article describes the implementation of Bibliomining and Text Mining in the “Juan Bautista Vázquez” library of the University of Cuenca. The purpose of this study is to determine the behavior of library users by discovering patterns of similarity between the titles they seek and the titles of the bibliographic material they borrow. In this case study, we used the methodology proposed by Nicholson and the algorithms and libraries of the tool R, to create word clouds generated from search terms and book titles; demonstrating that the used visualization facilitates the perception and the interpretation of the obtained results.
Keywords: Data mining, text mining, bibliomining, library, words cloud.
RESUMEN
Hoy en día, la gestión de grandes volúmenes de información para dar soporte a las decisiones administrativas es uno de los retos que enfrentan las bibliotecas. Las técnicas de Text Mining pueden utilizarse para extraer conocimiento oculto de grandes volúmenes de datos. Este artículo describe la implementación de técnicas de Bibliomining y Text Mining en el Centro de Documentación Regional “Juan Bautista Vázquez” de la Universidad de Cuenca. El objetivo de este estudio es determinar el comportamiento de los usuarios de la biblioteca al descubrir patrones de similitud entre los títulos que buscan y los títulos del material bibliográfico que toman prestado. En este caso de estudio, se usa la metodología propuesta por Nicholson y, los algoritmos y librerías de la herramienta R, para crear nubes de palabras generadas a partir de términos de búsquedas y títulos de libros; demostrando que la visualización utilizada facilita la percepción e interpretación de los resultados obtenidos.
Palabras clave: Minería de datos, minería de texto, bibliomining, biblioteca, nube de palabras.Downloads
Metrics
References
Azam, I., Sohrawardi, S., Das, H. S., Alam, M. S., Alvy, M. S., & Rahman, R. M. (2013). Bibliomining on North South University library data. 8th International Conference on Digital Information Management, USA.
Baeg, J. H. (2016). The analysis of journals topics and trend: text mining and word cloud. Illinios, USA: IConference 2016 Proceedings, 5 pp. Disponible en https://www.ideals.illinois.edu/bitstream/handle/2142/89376/Baeg578.pdf?sequence=1&isAllowed=y
Brown, M. S. (2014). Data mining for dummies. Hoboken, USA: John Wiley & Sons.
Chen, M.-S., Han, J., & Yu, P. (1996). Data mining: An Overview from Database Perspective. IEEE Transactions on Knowledge and Data Engineering, pp. 866-883.
Cong, D. (2017). Application of text mining in library book procurement. 13th Global Congress on Manufacturing and Management, MATEC Web Conf., Vol. 100, 6 pp.
Funk, M. E. (2013). Our words, our story: a textual analysis of articles published in the Bulletin of the Medical Library Association/Journal of the Medical Library Association from 1961 to 2010. Journal of the Medical Library Association, 101(1), 12-20. doi: 10.3163/1536-5050.101.1.003
Haro, V., Pérez, W., & Saquicela, V. (2016). Bibliomining para descubrir reglas de asociación en el Centro de Documentación Regional "Juan Bautista Vázquez". Maskana, 7(No. especial) - TIC.EC: Congreso Ecuatoriano de Tecnologías de la Información y Comunicaciones, pp. 203-211.
Haro, V., Pérez, W., Siguenza-Guzman, L., Cattrysse, D., & Saquicela, V. (2014). Diseño e implementación de un sistema de soporte de decisiones para el Centro de Documentación Regional "Juan Bautista Vázquez". MASKANA, Vol. 5, No. especial - TIC.EC: Congreso Ecuatoriano de Tecnologías de la Información y Comunicaciones, pp. 245-256.
Nicholson, S. (2003). The bibliomining process: Data warehousing and data mining for library decision-making. Information Technology and Libraries, 22(4), 4-9.
Nicholson, S., & Stanton, J. (2003). Gaining strategic advantage through bibliomining: Data mining for management decisions in corporate, special, digital, and traditional libraries. In: Nemati, H., & Barko, C. (Eds.). Organizational data mining: Leveraging enterprise data resources for optimal performance. Hershey, PA: Idea Group Publishing, pp. 247-262.
Nicholson, S., & Stanton, J. (2005). Bibliomining for library decision-making. In: Wang, J. (Ed.). Encyclopedia of Information Science and Technology, IGI Global Disseminator of Knowledge, pp. 272-277.
Ramez, E., & Navathe, S. B. (Eds.) (2010). Fundamentals of database systems. (6th ed.) Boston, USA: Addison-Wesley, 1201 pp.
Riveros Malberti, M. A., & Klenzi, R. O. (2015). Reglas de asociación en el cómputo de utilización de libros en una biblioteca universitaria. Enfoque UTE, 6(2), 86-101.
Siguenza-Guzman, L., Saquicela, V., & Cattrysse, D. (2014). Design of an integrated decision support system for library holistic evaluation. Proceedings of IATUL Conferences, Helsinki, Finland, pp.1-12.
Siguenza-Guzman, L., Saquicela, V., Avila-Ordóñez, E., Vandewalle, J., & Cattrysse, D. (2015). Literature review of data mining applications in academic libraries. The Journal of Academic Librarianship, 41(4), 499-510, https://doi.org/10.1016/j.acalib.2015.06.007
Uppal, V., & Chindwani, G. (2013). An empirical study of application of data mining techniques in library system. International Journal of Computer Applications, 74(11), 42-46.
Waegel, D. (2006). The development of text-mining tools and algorithms‖. Pennsylvania, USA: Ursinus College, 32 pp.
Downloads
Published
How to Cite
Issue
Section
License
Copyright © Autors. Creative Commons Attribution 4.0 License. for any article submitted from 6 June 2017 onwards. For manuscripts submitted before, the CC BY 3.0 License was used.
You are free to:
Share — copy and redistribute the material in any medium or format |
Adapt — remix, transform, and build upon the material for any purpose, even commercially. |
Under the following conditions:
Attribution — You must give appropriate credit, provide a link to the licence, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licenser endorses you or your use. |
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the licence permits. |