Respuesta de semillas de tres especies nativas altoandinas a diferentes condiciones de almacenamiento

Autores/as

  • Claudia Patiño-Uyaguari Facultad de Ciencias Agropecuarias, Carrera de Ingeniería Agronómica, Universidad de Cuenca, Cuenca, Ecuador
  • Janeth Jiménez Universidad de Cuenca
  • Franklin Marín Universidad de Cuenca http://orcid.org/0000-0002-9124-3889
  • Ximena Palomeque Universidad de Cuenca http://orcid.org/0000-0003-4711-9650

DOI:

https://doi.org/10.18537/mskn.10.02.07

Palabras clave:

Tiempo de almacenamiento, contenido de humedad, temperatura, Parque Nacional El Cajas, Andes

Resumen

Para asegurar la capacidad de germinación y viabilidad de especies forestales nativas es importante conocer las condiciones óptimas para el almacenamiento de semillas a largo plazo. En respuesta a esto, nosotros investigamos el efecto del almacenamiento de semillas en la germinación, viabilidad y velocidad de germinación (VG) de Vallea stipularis, Hedyosmum luteynii y Oreopanax avicenniifolius. Las semillas fueron colectadas de los bosques Llaviucu y Mazán del Parque Nacional El Cajas y fueron expuestas a diferentes tratamientos de almacenamiento: tres contenidos de humedad (inicial, medio bajo), dos temperaturas (10°C y temperatura ambiente) y tres tiempos de almacenamiento (3, 6 y 12 meses). Los resultados mostraron que en general las semillas de V. stipularis almacenadas a 10ºC durante 12 meses, presentaron bajos e incluso nulos porcentajes de geminación; la viabilidad y VG disminuía conforme se incrementaba el tiempo de almacenamiento. Las semillas de H. luteynii tuvieron una alta germinación y viabilidad hasta los 12 meses de almacenamiento a 10ºC, sin embargo, su germinación fue tardía y poco sincronizada. El almacenamiento a temperatura ambiente no favoreció la germinación y VG de las dos especies, aunque, H. luteynii mantuvo su viabilidad intacta hasta el último periodo evaluado. O. avicenniifolius mantuvo su capacidad germinativa hasta los 12 meses de almacenamiento, tanto a 10ºC como temperatura ambiente, pero con baja germinación. El conocimiento generado contribuye para un mejor manejo de las semillas, en programas de conservación ex situ y la producción de plántulas para la restauración.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Ali, S., Bouinot, D., Wagner, M. H., Bonnet, M., Sotta, B., Grappin, P., & Jullien, M. (2004). Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: Studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta, 219(3), 479-488. https://doi.org/10.1007/s00425-004-1251-4

Bailly, C. (2004). Active oxygen species and antioxidants in seed biology. Seed Science Research, 14(2), 93-107. https://doi.org/10.1079/ssr2004159

Baskin, C. C., & Baskin, J. M. (2001). Seeds: ecology, biogeography, and evolution of dormancy and germination. San Diego, USA: Academic Press.

Baskin, C. C., & Baskin, J. M. (2003). Seed germination and propagation of Xyris tennesseensis a federal endamgered wetland species. Wetlands (Vol. 23). doi:https://doi.org/10.1672/0277-5212(2003)023[0116:sgapox]2.0.co;2

Baskin, C. C., & Baskin, J. M. (2014). Variation in seed dormancy and germination within and between individuals and populations of a species. Seeds: Ecology, biogeography and evolution of dormancy and germination. https://doi.org/10.1016/B978-0-12-4166776.00008-1

Bates, D., Machler, M., Bolker, B., & Walker, S. (2015). Fitti VCFR4ZAng linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1-48. http://dx.doi.org/10.18637/ jss.v067.i01

Bewley, J. D., Bradford, K. J., Hilhorst, H. W. M., & Nonogaki, H. (2013). Seeds: physiology of development, germination and dormancy. New York, USA: Springer.

Bourgeois, B., Lemay, M. A., Landry, T., Rochefort, L., & Poulin, M. (2019). Seed storage behaviour of eight peatland pool specialists: Implications for restoration. Aquatic Botany, 152, 59-63. https://doi.org/10.1016/j.aquabot.2018.09.008

Çakmak, T., Atici, O., Agar, G., & Sunar, S. (2010). Natural aging-related biochemical changes in alfalfa (Medicago sativa L.) seeds stored for 42 years. International Research Journal of Plant Science, 1(1), 001-006.

Ceballos, Á., & López, J. (2007). Conservación de la calidad de semillas forestales nativas. Almacenamiento. 58(4), 265-292.

Courtis, A. (2013). Germinación de semillas: Cátedra de fisiología vegetal carreras. Universidad Nacional del Nordeste, Argentina, 1-22. Disponible en https://docplayer.es/12165022-Catedra-de-fisiologia-vegetal.html

Defries, R. S., Rudel, T., Uriarte, M., & Hansen, M. (2010). Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nature Geoscience, 3(3), 178-181. https://doi.org/10.1038/ngeo756

Doria, J. (2010). Generalidades sobre las semillas: su producción, conservación y almacenamiento. AGRIS, 31(1), 74-85.

Estrella, J., Manosalvas, R., Mariaca, J., & Ribadeneira, M. (2005). Biodiversidad y recursos genéticos: Una guía para su uso y acceso en el Ecuador. Quito, Ecuador: EcoCiencia.

FAO. (2012). El estado de los recursos geneticos forestales en el mundo. Informe Nacional Ecuador. Quito. Disponible en http://www.fao.org/3/i3825e/i3825e20.pdf

FAO, FIDA, & PMA. (2014). El estado de la inseguridad alimentaria en el mundo 2014. Fortalecimiento de un entorno favorable para la seguridad alimentaria y la nutrición. Rome, Italy: FAO. Disponible en http://www.fao.org/3/a-i4030s.pdf

Gentil, D. F. de O. (2001). Conservao de sementes do cafeeiro: Resultados discordantes ou complementares? Bragantia, 60(3), 149-154.

Geneve, R. L. (2003). Impact of temperature on seed dormancy. HortScience: a publication of the American Society for Horticultural Science, 38(3), 336-341. doi:10.21273/HORTSCI.38.3.336

Grijalva, J., Ximena, C., Ramos, R., Barrera, P., Vera, R., & Sigcha, F. (2015). Estado de los recursos genéticos forestales en Ecuador. Programa Nacional de Forestería del Instituto Nacional de Investigaciones Agropecuarias. (Publicació). Retrieved from http://181.112.143.123/bitstream/41000/2827/1/iniapsc322est.pdf

ISTA. (2007). International rules for seed testing (Vol. 5). https://www.seedtest.org/en/home.html

Jimenez, J., Alche, J., Wang, W., & Rodríguez, M. (2007). Alpeorujo y semillas de olivo presentan el mismo tipo de proteinas de almacenamiento. En: Olivar, F. D. (Ed.), Simposium Científico Técnico del Año 2005, (págs. 365 - 376). doi:978-84-934503-0-4

Jiménez, J., & Patiño, C. (2019). Germinación, desarrollo inicial y supervivencia de plántulas bajo diferentes condiciones de almacenamiento de semillas de tres especies nativas de bosques del Parque Nacional Cajas (Universadad de Cuenca). Retrieved from http://dspace.ucuenca.edu.ec/handle/123456789/32802

Kindt, R., Lillesø, J.-P. B., Mbora, A., Muriuki, J., Wambugu, C., Frost, W., … Holding-Anyonge, C. (2006). Tree seeds for farmers: a toolkit and reference source. Nairobi, Kenya. Disponible en http://www.worldagroforestry.org/output/tree-seeds-farmers-toolkit-and-reference-source

Kucera, B., Cohn, M. A., & Leubner-Metzger, G. (2005). Plant hormone interactions during seed dormancy release and germination. Seed Science Research, 15(4), 281-307. https://doi.org/10.1079/SSR2005218

Kudred, K., & Sener, B. (1990). Effects of kinetin and gibberellic acid in overcoming high temperature and salinity (NaCl) stresses on the germination of barley and lettuce. Seeds Phyton (Horn, Austria), 30(1), 65-74.

Lengkeek, G., Jaenicke, H., & Dawson, K. (2005). Genetic bottlenecks in agroforestry systems: Results of tree nursery surveys in East Africa. Agroforestry Systems, 63(2), 149-155. https://doi.org/10.1007/s10457-004-9155-7

Ministerio del Ambiente. (2019). Plan Nacional de Restauración Forestal 2019-2030. Quito, Ecuador.

Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853-858. https://doi.org/10.1038/35002501

Née, G., Xiang, Y., & Soppe, W. J. (2017). The release of dormancy, a wake-up call for seeds to germinate. Current Opinion in Plant Biology, 35, 8-14. https://doi.org/10.1016/j.pbi.2016.09.002

Palomeque, X., Maza, A., Iñamagua, J. P., Günter, S., Hildebrandte, P., Weber, M., Stimm, B. (2017). Variabilidad intraespecífica en la calidad de semillas de especies forestales nativas en bosques montanos en el sur del Ecuador: Implicaciones para la restauración de bosques. Revista de Ciencias Ambientales (Trop J Environ Sci), 51(2), 52-72.

Pakkad, G., Al Mazrooei, S., Blakesley, D., James, C., Elliott, S., Luoma-Aho, T., & Koskela, J. (2008). Genetic variation and gene flow among Prunus cerasoides D. Don populations in northern Thailand: Analysis of a rehabilitated site and adjacent intact forest. New Forests, 35(1), 33-43. https://doi.org/10.1007/s11056-007-9059-2

Pammenter, N. W., & Berjak, P. (2000). Semillas Ortodoxas y Recalcitrante. Obtenido de Manual de Semillas de Árboles Tropicales: https://rngr.net/publications/manual-de-semillas-de-arboles-tropicales/parte-i/semillas-ortodoxas_yrecalcitrantes/at_download/file

Pinheiro, J., Bates, D., DebRoy, S., & Sarkar, D. (2018). nlme: Linear and nonlinear mixed effects models. R package version 3.5.1. Obtenido de https://CRAN.R-project.org/package=nlme.

Pritchard, H. W., & Dickie, J. B. (2003). Predicting seed longevity: the use and abuse of seed viability equations. Chapter 35, 1-70. Disponible en https://www.academia.edu/17275313/ Predicting_seed_longevity_the_use_and_abuse_of_seed_viability_equations?auto=download

Pritchard, H. W. (2004). Classification of seed storage types for ex situ conservation in relation to temperature and moisture. Washington D.C., USA.

Procházková, Z., & Bezděčková, L. (2008). Effects of moisture content, storage temperature and type of storage bag on the germination and viability of stored European beech (Fagus sylvatica L.) seeds. Journal of Forest Science, 54(7), 287-293.

Pukacka, S., & Ratajczak, E. (2007). Age-related biochemical changes during storage of beech (Fagus sylvatica L.) seeds. Seed Science Research, 17(1), 45-53. https://doi.org/10.1017/S0960258507629432

Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C., & Job, D. (2012). Seed Germination and Vigor. Annual Review of Plant Biology, 63(1), 507-533. https://doi.org/10.1146/annurev-arplant-042811-105550

R Core Team. (2018). R: A language and environment for statistical computing. Disponible en https://www.R-project.org/

Ribeiro, J., & Costa, C. (2015). The effect of temperature regulation on seed germination of the tropical tree Myrsine parvifolia A. DC near its southern limit. South African Journal of Botany, 98, 128-133. https://doi.org/10.1016/j.sajb.2015.02.012

Romero-Saritama, J. M. (2018). Seed conservation: An alternative to store germplasm and recover threatened Ecuadorian forests. Neotropical Biology and Conservation, 13(1), 74-85. https://doi.org/10.4013/nbc.2018.131.09

Royal Botanic Gardens Kew. (2015). Seed Information Database(SID). Version 7.1. Disponible en http://data.kew.org/sid/

Schmidt, L. H. (2000). Guide to handling of tropical and subtropical forest seed. Danida Forest Seed Centre, Hoersholm, Denmark.

Shahidi, F., & Zhong, Y. (2010) Lipid oxidation and improving the oxidative stability. Chemical Society Reviews, 39, 4067-4079. http://dx.doi.org/10.1039/b922183m

Shu, K., Liu, X. D., Xie, Q., & He, Z. H. (2016). Two faces of one seed: Hormonal regulation of dormancy and germination. Molecular Plant, 9(1), 34-45. https://doi.org/10.1016/j.molp.2015.08.010

Siddique, A. B., & Wright, D. (2003). Effects of different seed drying methods on moisture percentage and seed quality (viability and vigour) of Pea Seeds (Pisum sativum L.). Asian Journal of Plant Sciences, 2(13), 978982. https://doi.org/10.3923/ja.2003.201.208

Sierra, R. (1999). Propuesta preliminar de un sistema de clasificación de vegetación para el Ecuador Continental [Preliminary proposal of a vegetation classification system for Continental Ecuador]. 175 p. https://doi.org/10.13140/2.1.4520.9287

Smith, J. R., Mengistu, A., Nelson, R. L., & Paris, R. L. (2008). Identification of soybean accessions with high germinability in high-temperature environments. Crop Science, 48(6), 2279-2288. https://doi.org/10.2135/cropsci2008.01.0026

Thomas, E., Jalonen, R., Loo, J., Boshier, D., Gallo, L., Cavers, S., … Bozzano, M. (2014). Forest ecology and management genetic considerations in ecosystem restoration using native tree species. Forest Ecology and Management, 333(2014), 66-75. https://doi.org/10.1016/j.foreco.2014.07.015

Tian, P. P., Lv, Y. Y., Yuan, W. J., Zhang, S. B., & Hu, Y. Sen. (2019). Effect of artificial aging on wheat quality deterioration during storage. Journal of Stored Products Research, 80, 50-56. https://doi.org/10.1016/j.jspr.2018.11.009

Varela, S., & Arana, V. (2011). Latencia y germinación de semillas. Tratamientos pregerminativos. Serie Técnica - Sistemas Forestales Integrados, 3(1), 10.

Velasquez, J. S., Montero, A. R., & Tapia, C. G. (2008). Semillas tecnología de producción y conservación. Quito, Ecuador: INIAP, Estación Experimental Santa Catalina, Departamento de Producción de Semillas. Disponible en http://repositorio.iniap.gob.ec/bitstream/41000/ 56/1/iniapsc280.pdf

Walters, C., Wheeler, L. M., & Grotenhuis, J. (2005). Longevity of seeds stored in a gene bank: species characteristics. Seed Science Research, 15(1), 1-20. https://doi.org/10.1079/SSR2004195

Publicado

2019-12-18

Cómo citar

Patiño-Uyaguari, C., Jiménez, J., Marín, F., & Palomeque, X. (2019). Respuesta de semillas de tres especies nativas altoandinas a diferentes condiciones de almacenamiento. Maskana, 10(2), 64–75. https://doi.org/10.18537/mskn.10.02.07

Número

Sección

Artículos científicos