Análisis comparativo de modelos de flujo de ríos 1-D aplicando un enfoque cuasi 2D para la predicción de llanuras de inundación

Autores/as

  • Mauricio Villazón Laboratory of Hydraulics, Faculty of Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 40, Leuven, Belgium.Laboratory of Hydraulics, Facultad de Ciencias y Tecnología, Universidad Mayor de San Simón, Km 4,2 Avenida Petrolera, Cochabamba, Bolivia.
  • Luis Timbe Grupo de Ciencias de la Tierra y del Ambiente, Universidad de Cuenca, Av. 12 de Abril s/n, Cuenca, Ecuador. https://orcid.org/0000-0001-5623-0487
  • Patrick Willems Laboratory of Hydraulics, Faculty of Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 40, Leuven, Belgium. https://orcid.org/0000-0002-7085-2570

DOI:

https://doi.org/10.18537/mskn.04.01.08

Palabras clave:

Modelos hidrodinámicos 1-D, aproximación cuasi 2-D, modelación de planicies aluviales, curva hipsométrica

Resumen

En este estudio se realizó un análisis comparativo de tres modelos hidrodinámicos de ríos 1-D (Mike 11, InfoWorks-RS y HEC-RAS) con una configuración cuasi 2-D. La planicie de inundación fue esquematizada mediante una red de ramales ficticios o como áreas de almacenamiento. Los modelos se evaluaron en un área reducida de la cuenca del río Dender en Bélgica, para lo cual se simularon tres eventos de inundación históricos y ocho eventos sintéticos con períodos de retorno entre 1 y 1000 años, respectivamente. La eficiencia de los modelos se cuantificó comparando los valores simulados de caudal, nivel de la superficie del agua, volumen de inundación y área inundada. Los resultados muestran que los tres modelos y las dos configuraciones empleadas para la representación de las planicies aluviales dan resultados muy similares en el cauce principal del río, con un error cuadrático medio de alrededor de 6 cm para los niveles máximos y 2% para los caudales. A pesar de la alta precisión en el cauce, los niveles de crecida en la llanura aluvial tienen un error cuadrático medio mayor, de aproximadamente 25 cm, en condiciones de inundación.

 

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Abbott, M., F. Ionescu, 1967. On the numerical computation of nearly-horizontal flows. J. Hydraul. Res., 5, 97-117.

Apel, H., A.H. Thienken, B. Merz, G. Blöschl, 2004. Flood risk assessment and associated uncertainty. Nat. Hazards and Earth Syst. Sci., 4, 295-308.

Bates, P.D., A.P.J. De Roo, 2000. A simple raster-based model for flood inundation simulation. J. Hydrol., 263, 54-77.

Casas, A., G. Benito, V.R. Thorndycraf, M. Rico, 2006. The topographic data source of digital terrain models as a key element in the accuracy of hydraulic flood modelling. Earth Surf. Process. Landforms, 31(4), 444-456.

Chen, Y.H., 1973. Mathematical modelling of water and sediment routing in natural channels, Ph.D. Dissertation, Department of Civil Engineering, Colorado State University, Ft. Collins, CO.

Crowder, R., A. Pepper, C. Whitlow, 2003. Testing and benchmarking 1D hydraulic river modelling packages. Proc. of the 38th Flood and Coastal Management Conference, Keele University, 16-18 July 2003.

DHI, 2005. Mike11, version 2005. A modelling system for rivers and channels. Reference manual. DHI Water & Environment, Hørsholm, Denmark.

Evans, E.P., P.H. Von Lany, 1983. A mathematical model of overbank spilling and urban flooding. Int. Conf. on Hydraulic Aspects of Floods and Flood Control, London, BHRA.

FHWA. 1978. Federal Highway Administration, 1978. Hydraulics of bridge waterways, Hydraulic design series No. 1. U.S. Department of Transportation, Washington D.C.

Hardy, R.J., P.D. Bates, M.G. Anderson, 1999. The importance of spatial resolution in hydraulic model for floodplain environments. J. Hydrol., 216, 124-136.

Halcrow and HR Wallingford, 2006. InfoWorks-RS, version 7.5. Halcrow and HR Wallingford, UK.

Horritt, M.S., P.D. Bates, 2001. Effects of spatial resolution on a raster based model of flood flow. J. Hydrol., 253(1-4), 239-249.

Horritt, M.S., P.D. Bates, 2002. Evaluation of 1D and 2D numerical models for predicting river flood inundation. J. Hydrol., 268(1-4), 87-99.

Havnø, K., M.N. Madsen, J. Dørge, 1995. MIKE 11 - a generalized river modelling package. In: Singh V.P. (Ed.). Computer Models of Watershed Hydrology, Water Resources Publications, CO, USA, 733-782.

Helmiö, T., 2005. Unsteady 1D flow model of a river with partly vegetated floodplains-application to the Rhine River. Environ. Modell. Soft., 20(3), 361-375.

Le Dimet, F-X., C. Mazauric, W. Castaings, 2002. Models and data for flood modelling. Proc. of the 2002 Euro-China Co-operation Forum on the Information Society, Beijing, China, April 16-19.

Liggett, J.A., J.A. Cunge, 1975. Numerical methods of solution of the unsteady flow equations. In: Mahmood, K, V. Yervjevich (Eds.) Unsteady Flow in Open Channels, Vol. I, Chapter 4. Water Resources Publications, Ft. Collins, CO.

Markar, M.S., S.Q. Clark, M. Yaowu, Z. Jing, 2004. Evaluation of hydrologic and hydraulic models for real-time flood forecasting use in the Yangtza River catchment. Proc. of the 8th Nat. Conf. of Hydraulics in Water Engineering. Institute of Public Works Engineering Australia.

Mirosław-Światek, D., T. Okruszko, J. Chormanski, 2003. Natural floodplain storage capacity – modelling approach. Proc. of the Int. Conf. Towards Natural Flood Reduction Strategies, Warsaw, Poland 6-13 September.

Nash, J.E., J.V. Sutcliffe, 1970. River flow forecasting through conceptual model. J. Hydrol., 10, 282-290.

Pender, G., S. Neelz, 2007. Use of computer model of flood inundation to facilitate communication in flood risk management. Environ. Hazard, 7(2), 106-114.

Pistocchi, A., P. Mazzoli, 2002. Use of HEC-RAS and HEC-HMS models with ArcView for hydrologic risk management. In: IEMS 2002 - Proc. of the Int. Environmental Modelling and Software Society Conference, Lugano, Switzerland, 305–310.

Preissmann A., 1961. Propagation des intumescences dans les canaux et rivieres. Presented at the 1st Congress of the French Association for Computation, Grenoble, France, 1961.

AWZ 2003, S. Rombauts, P. Willems, 2004. Hydrological modelling and composite hydrographs for the river Dender basin (in Dutch). Research project for the Flanders Hydraulics Research Laboratory of the Flemish Government in Belgium. Laboratory of Hydaulics, KU Leuven, Belgium, 5 subreports.

Rungø, M., K.W. Olsen, 2003. Combined 1- and 2- dimensional flood modelling. Proceeding 4th Iranian Hydraulic Conference, 21-23 October, Shriraz, Iran.

Sinnakaudan, S.K., A. Ab. Ghani, C.C. Kiat, 2002. Flood inundation analysis using HEC-6 and ArcView GIS 3.2a. 5th Int. Conf. on Hydroscience and Engineering, Warsaw, Poland.

Sinnakaudan, S.K., A. Ab. Ghani, S. Ahmad, S. Mohd, N.A. Zakaria, 2003. Flood risk mapping for Pari River incorporating sediment transport. Environ. Modell. Soft., 18 (2), 119-130.

Timbe, L., P. Willems, 2007. Performance of 1D and 2D hydrodynamic models for floodplain modelling. Proc. of the Int. Congress on Development Environmental and Natural Resources: Multi-level and Multi-scale Sustainability, 11-13 July, Cochabamba, Bolivia 1, 624-632.

Timbe, L., P. Willems, J. Berlamont, 2005. Validation of a quasi-2D hydrodynamic river flood model using historical and ERS-SAR derived flood maps. XXXI IAHR Conference on “Water Engineering for the Future, Choices and Challenges”, Seoul, Korea 11-16 Sept. 2005, 137-147.

Tun Lee, K., Y-H. Ho, Y-J. Chyan, 2006. Bridge blockage and overbank flow simulations using HEC-RAS in the Keelung River during the 2001 Nari typhoon. Technical notes, J. Hydraul. Eng.ASCE. 132(3), 319-323.

US-ACE, 2006. HEC-RAS: River Analysis System, User’s Manual, Version 4.0 Beta, US Army Corps of Engineers.

US-ACE, 2002a. HEC-RAS: River Analysis System, Hydraulic Reference Manual, Version 3.1, US Army Corps of Engineers.

US-ACE, 2002b. HEC-GeoRAS: An extension for support of HEC-RAS using ArcView, User’s Manual, Version 3.1, US Army Corps of Engineers.

Vaes, G., P. Willems, J. Berlamont, 2000. Selection and composition of representative hydrographs for river design calculation. Int. Conf. on Monitoring catchment water quantity and quality, Gent, Belgium, September 2000.

Vaes, G., P. Willems, 2002. Evaluation of the composite hydrograph method for flood risk estimation (in Dutch). Research project for the Flanders Hydraulics Research Laboratory of the Flemish Government in Belgium, Laboratory of Hydraulics, KU Leuven, Belgium, May 2002, 93 pp.

Van Looveren, R., P. Willems, M. Sas, C. Bogliotti, J. Berlamont, J., 2000. Comparison of the software packages ISIS and Mike11 for the simulation of one-dimensional open channel flow. Hydrosoft 2000, Lisbon, 12-14 Jun 2000, 11 pp.

Van Kalken, T., C. Skotner, M. Mulholland, 2005. Application of an Open, GIS Based Flood Forecast System to the Waikato River, New Zealand. Innovation, Advances and Implementation of Flood Forecasting Technology, 17-19 October, Tromsø, Norway.

Villazón, M.F., 2005. Comparison of river hydrodynamic models in a quasi two-dimensional approach. MSc thesis, IUPWARE-Vrij Universiteit Brussel - Katholieke Universiteit Leuven, Belgium.

Villazón, M.F., P. Willems, 2009. The importance of spill conceptualizations and head loss coefficients in a quasi two-dimensional approach for river inundation modelling. Ed. Samuels, P., S. Huntington, W. Allsop, J. Harrop, Flood Risk Management: Research and Practice, FloodRisk 2008 Conference. Oxford, UK, 30 Sept.- 2 Oct. 2008 (pp. 305-315). London: Taylor & Francis Group.

Warner, J.C., W.R. Geyer, J.A. Lerczak, 2005. Numerical modelling of an estuary: A comprehensive skill assessment. J. Geophys. Res., 110( C05), doi: 10.1029/2004JC002691.

Wermer, M., S. Blazkova, J. Petr, 2005. Spatially distributed observations in constraining inundation modelling uncertainties. Hydrol. Process., 19, 3081-3096.

Wermer, M., 2004. A comparison of flood extent modelling approaches through constraining uncertainties on gauge data. Hydrol. Earth Syst. Sc., 8(6), 1141-1152.

Willems, P., R. Van Looveren, M. Sas, C. Bogliotti, J. Berlamont, 2000. Practical comparison of the modelling systems MIKE11 and ISIS for river flood modelling by the quasi two-dimensional approach. Hydroinformatics 2000, Iowa, 23-27 July 2000, 8 p.

Willems, P., L. Timbe, P. Campling, 2002a. Cross-section processing and DTM correction for quasi 2D floodplain modelling: methodology, application to the Mike11-Dender model, and uncertainty analysis (in Dutch). Research project for the Flanders Hydraulic Research Laboratory of the Flemish Government in Belgium, by K.U.Leuven – SADL and Hydraulics Laboratory, Final report May 2002, 78 p.

Willems, P., G. Vaes, D. Popa, L. Timbe, J. Berlamont, 2002b. Quasi 2D River Flood Modelling. River Flow 2002- Proceeding of the International Conference on Fluvial Hydraulics, D. Bousmar & Y. Zech, (Editors), Swets & Zeitlinger, Lisse, The Netherlands.

AWZ 2003, P. Willems, S. Rombauts, 2004. Setup of the numeric hydrological model and formulation of the composite hydrograph for the Dender basin. Research Report for the Flanders Hydraulics Research Administration (WL Borgenhout), IMDC & KU Leuven (in Dutch).

Wilmott, C.J., 1981. On the validation of models. Physical Geography, 2, 184-194.

Yang, J., R.D. Townsend, B. Daneshfar, 2006. Applying the HEC-RAS model and GIS techniques in river network floodplain delineation. Can. J. Civil Eng., 33, 19-28.

Descargas

Publicado

2013-06-25

Cómo citar

Villazón, M., Timbe, L., & Willems, P. (2013). Análisis comparativo de modelos de flujo de ríos 1-D aplicando un enfoque cuasi 2D para la predicción de llanuras de inundación. Maskana, 4(1), 107–126. https://doi.org/10.18537/mskn.04.01.08

Número

Sección

Artículos científicos