Validación de un algoritmo robusto para la estimación del movimiento en secuencias de imágenes cardiacas
Abstract
RESUMEN
Este artículo describe la validación n de un algoritmo de flujo óptico basado en esparcidad. Para ello se utilizan dos secuencias de imágenes extraídas de la base de datos Sintel y también imágenes extraídas de una secuencia de imágenes de resonancia magnética etiquetada, las cuales representan una capa el ventrículo izquierdo ubicadas en la zona media y de acuerdo a la orientación de eje corto. Los resultados son prometedores debido a que el error de magnitud promedio para las secuencias de la base de datos Sintel es menor a 3 pixels y menor de 1 mm para las imágenes de resonancia magnética etiquetada.
Palabras clave: Flujo óptico, movimiento cardiaco, imágenes médicas, resonancia magnética etiquetada, base de datos Sintel.
ABSTRACT
This paper describes the validation of a sparse based optical flow algorithm using two sequences extracted from the Sintel database and also images extracted from a tagged magnetic resonance image sequence representing a short–axis slice located at the mid-wall of the left ventricle. Results are promising as the average magnitude error for the Sintel sequences is lower than 3 pixels and lower than 1 mm for the tagged MRI.
Keywords: Optical flow, cardiac motion, medical imaging, tagged MRI, Sintel database.
Downloads
Metrics
References
Barron, J., D. Fleet, S. Beauchemin, 1994a. Performance of optical flow techniques. IJCV, 12(1), 43-77.
Barron, J.L., D.J. Fleet, S.S. Beauchemin, 1994b. Performance of optical flow techniques. International Journal of Computer Vision, 12, 43-77.
Black, M.J., P. Anandan, 1996. The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. Computer Vision and Image Understanding, 63(1), 75-104.
Butler, D.J., J. Wulff, G.B. Stanley, M.J. Black, 2012. A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon et al. (Eds.), European Conf. on Computer Vision (ECCV), Part IV, LNCS 7577, pp. 611-625, Springer-Verlag, Germany.
Candes, E., J. Romberg, T. Tao, 2006. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, pp. 489-509.
Carranza, N., G. Cristóbal, M.J. Ledesma-Carbayo, A. Santos, 2006. A new cardiac motion estimation method based on a spatio-temporal frequency approach and hough transform. In: Proceedings of Computers in Cardiology, Vol. 33, pp. 805-808.
Donoho, D., 2006. Compressed sensing. IEEE Transactions on Information Theory, pp. 1289-1306.
Fayad, Z.A., V. Fuster, K. Nikolaou, C. Becker, 2002. Computed tomography and magnetic resonance imaging for noninvasive coronary angiography and plaque imaging current and potential future concepts. Circulation, 106(15), 2026-2034.
Horn, B., B. Schunck, 1981. Determining optical flow. Artificial Intelligence, 185-203.
Ibarra, E., R. Medina, 2013. Sparse based optical flow estimation in cardiac magnetic resonance images. In: IX International Seminar on Medical Information Processing and Analysis, International Society for Optics and Photonics.
Ibarra, E., R. Medina, V. Morocho, P. Vanegas, 2015. Optical flow as a tool for cardiac motion estimation. In: Proceedings of the IEEE 2015 Asia-Pacific Conference on Computer Aided System Engineering, pp. 173-178, Quito, Ecuador.
Liu, X., J.L. Prince, 2010. Shortest path refinement for motion estimation from tagged mr images. IEEE Transactions on Medical Imaging, 29(8), 1560-1572.
Lucas, B., T. Kanade, 1981. An iterative image registration technique with an application to stereo vision. In: Proc. 7th Int. Joint Conf. Artificial Intelligence, pp. 674-679.
Mallat, S., Z. Zhang, 1993. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41(12), 3397-3415.
McCane, B., K. Novins, D. Crannitch, B. Galvin, 2001. On benchmarking optical flow. Computer Vision and Image Understanding, 84, 126-143.
Nitzken, M., G. Beache, A. Elnakib, F. Khalifa, G. Gimel’farb, A. El-Baz, 2012. Improving full-cardiac cycle strain estimation from tagged cmr by accurate modeling of 3d image appearance characteristics. In: 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 462-465.
Otte, M., H. Nagel, 1995. Estimation of optical flow based on higher-order spatiotemporal derivatives in interlaced and non-interlaced image sequences. Artificial Intelligence, 78, 5-43.
Samuel, M.S., M.L. Richard, 1991. Computation of 3-d velocity fields from 3-d cine ct images of a human heart. IEEE Transactions on Medical Imaging, 10(3), 295-306.
Shen, X., Y. Wu, 2010. Sparsity model for robust optical flow estimation at motion discontinuities. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2456-2463.
Suhling, M., M. Arigovindan, C. Jansen, P. Hunziker, M. Unser, 2005. Myocardial motion analysis from b-mode echocardiograms. IEEE Transactions on Image Processing, 14(4), 525-536.
Sun, D., S. Roth, M.J. Black, 2010. Secrets of optical flow estimation and their principles. In: Proc. of Computer Vision and Pattern Recognition (CVPR), pp. 2432-2439.
Wulff, J., D.J. Butler, G.B. Stanley, M.J. Black, 2012. Lessons and insights from creating a synthetic optical flow benchmark. In: Computer Vision-ECCV 2012. Workshops and Demonstrations, pp. 168-177. Springer-Verlag, Berlin-Heidelberg.
Xavier, M., A. Lalande, P.M. Walker, F. Brunotte, L. Legrand, 2012. An adapted optical flow algorithm for robust quantication of cardiac wall motion from standard cine-mr examinations. IEEE Transactions on Information Technology in Biomedicine, 16, 859-868.
Xu, C., J.J. Pilla, G. Isaac, J.H. Gorman, A.S. Blom, R.C. Gorman, Z. Ling, 2010. Deformation analysis of 3d tagged cardiac images using an optical flow method. Journal of Cardiovascular Magnetic Resonance, 12, 1-14.
Downloads
Published
How to Cite
Issue
Section
License
Copyright © Autors. Creative Commons Attribution 4.0 License. for any article submitted from 6 June 2017 onwards. For manuscripts submitted before, the CC BY 3.0 License was used.
You are free to:
Share — copy and redistribute the material in any medium or format |
Adapt — remix, transform, and build upon the material for any purpose, even commercially. |
Under the following conditions:
Attribution — You must give appropriate credit, provide a link to the licence, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licenser endorses you or your use. |
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the licence permits. |